BIAN — PNC Open APIs
for Banking

Capstone Project at Carnegie Mellon University

Mark Grobaker, Arashdeep Kaur, Chaitanya Kommuru
Wenting Tao, Pallavi Thakur

10th May 2017

\\\\\\\

BIAN

Contents

Executive Summary

Acknowledgements

Project Objectives
Objective 1: Comply with PSD2

Objective 2: Demonstrate a solution built on BIAN, IFX, and PNC

Project Methodology
PSD2 Use Cases
BIAN’s Contribution

IFX Messages for PSD2
Comparing IFX and ISO
Interacting with PNC

Solution architecture

Implementation

Introduction and file description

Choice of HTTP method for RESTful AP
Code Walkthrough

Using our APIs

Conclusions and Recommendations
Lessons Learned

Suggestions for Future Work —
Standards and Frameworks

Suggestions for Future Work —
Development Work

Appendix

03
03

05
05
05

07
o7
09
i
15
16
17

19
19
20
21
25

27
29

29

31
32

This was a joint project between

EXGCUtIVG masters-level graduate students
Summary at Carnegie Mellon University’s

Heinz College, and stakeholders at
PNC Bank, BIAN (Banking Industry
Architecture Network), and IFX
(International Financial eXchange).

We demonstrate a working proof of concept for
open APIs in banking, in compliance with the
European Commission’s PSD2 financial
regulation document.

Other groups can build on these efforts to
ensure PSD2 compliance at their respective
financial institutions.

We would like to thank all those who contributed
to the success of this project. CMU Professor Mike
McCarthy was our adviser, and guided us in our
approach to the problem. Our client teams also
provided valuable information and feedback as
we progressed through the project. Our thanks
go to: Hans Tesselaar and Guy Rackham of BIAN;
Rich Urban of IFX; Chad Ballard, Mike Downs,
Laura Ritz, and Elesha Schulze of PNC; and
Ganeshji Marwaha, Chamindra De Silva, Pubudu
Welagedara, and Chinthaka Dharmasiri of Virtusa
Polaris, consultants to PNC.

Project
Objectives

05

Obijective 1: Comply with PSD2

The first goal of the project was to create a
working proof of concept for open APIs for
banking, in compliance with PSD2. PSD2 is a
financial regulation document that applies to banks
and financial institutions in the European Union.
This regulation was published on January 13,
2016, and will go into effect for banks on

January 13, 2018.

The reason PSD2 seeks to have banks create
these APIs is so that third parties can use them

to interact easily with the bank. There are two
primary use cases required by PSD2. Banks
should enable third parties to: (1) submit peer-to-
peer payments to the bank, and (2) check account
balances. Both of these capabilities are to be
enabled via openly accessible APIs.

Per PSD2 requirements, no fees should be
charged to third parties for these services. Further
details on PSD2 can be found in a whitepaper
published by Deutsche Bank ™

Objective 2: Demonstrate a
solution built on BIAN, IFX,
and PNC

The second goal of the project was to use
principles from BIAN and IFX to build a solution.
This solution was built to interact with PNC, but
could be adapted to any bank.

BIAN provides architectural principles designed
to guide technology implementations at financial
institutions. IFX provides a messaging standard,
again, designed specifically for financial
institutions. BIAN and IFX were interested

in producing a prototype to show how their
standards, designed specifically for financial
applications, could be combined to produce a
functioning product.

1. http.//cib.db.com/insights-and-initiatives/flow/Payment
Services Directive 2.html

1. http://cib.db.com/insights-and-initiatives/flow/Payment_Services_Directive_2.html
1. http://cib.db.com/insights-and-initiatives/flow/Payment_Services_Directive_2.html

PNC is a top ten US bank and a partner with BIAN in several other initiatives. Because
of their interest in furthering the work of BIAN, they offered to make a test environment
accessible to the CMU development team.

We were to use BIAN frameworks at a high level to guide the implementation of a message
exchange. The messages themselves would be structured according to IFX format. We
chose the scenarios we wanted to model based on the requirements of PSD2, which will
be discussed further below.

Financial Institutions BIAN Framework

Software Vendors

Figure 1. Left: Sample parties interacting with open APIs. Right: standards used to structure the messages to be
returned from the bank, in this case, PNC Bank.

06

Project
Methodology

o7

We begin by examining the use
cases of PSD2. Per PSD2, banks
should enable third parties to: (1)
submit peer-to-peer payments to
the bank, and (2) check account
balances. We produced the below
diagrams to model these use cases.

In figure 2, we model a peer-to-peer payment.

In this case, Ben Roethlisberger wants to make

a payment to Amazon. (Since we were working
from Pittsburgh, we made examples involving star
players from the Pittsburgh Steelers!) Ben has an
account at PNC, and Amazon has an account at
Chase. In order to initiate the payment, Ben fills out
a form on his third party provider (TPP) to request
a payment to be sent. In this case, we have
displayed Venmo as an example TPP. Venmo then
sends a message to PNC requesting the transfer.
PNC transfers the money to Chase, and the funds
are now available for Amazon to access.

Payment could just as easily have been from Ben
to another consumer, rather than from Ben to a
business. Either one would qualify for this PSD2
use case of sending a payment.

(As a side note, services like Venmo do not
currently exist in Europe for payments between

EU countries. Even in the US, Venmo works by
using the ACH system, which takes up to 3-5 days
for processing. Using open APIs would enable
instantaneous transfers.)

The area in the red dotted box is the one we
will be focusing on for our prototype; that is, we
developed the messaging between the TPP
and the bank.

Contractual
relationship
CHASE “‘ <— Mandated
l I B .i __ __ Financial
: i Reporting
| l Mandated
venmalJI T e
(i -

amazon
N

Figure 2. Peer-to-peer payment, the first use case specified in PSD2. Ben Roethlisberger sends
payment to Amazon.

b=

EPNC

s

¢mint

r
|
|
I
|
I
|
|
|
|
L

— T e e e

l ankof America.

__'Tn //}/

[o — g

Figure 3. Check account balances, second use case specified in PSD2. Antonio Brown gets his
balances from PNC and Bank of America.

The above figure shows a model of checking account balances across multiple banks.

In this case, Antonio Brown requests his TPP, Mint, to monitor balances from his two
accounts, PNC and Bank of America. Mint would automatically generate balance requests
to PNC and Bank of America on a regular basis (daily or more frequently, depending on
the TPP configuration).The banks would then respond to this message by providing their
respective balances to Mint. (Services such as Mint do not currently exist in Europe.)

Again, we wanted to build just the part boxed in red: the communication between the TPP
and the banks.

08

We had a number of calls with Guy Rackham, BIAN Lead
Architect. He explained to us the work that his organization has
done. In particular, he referred us to the BIAN Semantic API
How-To Guide, an architectural document he helped produce.

One of the main components of this document is the Semantic
API Selection Framework, which is shown below. The
framework helps the developer or architect to “ask all right
questions” that need to be asked before developing a solution.
(Full explanations of how to use this framework are available in
the BIAN Semantic APl How-To Guide and are not replicated
here.) This framework would prove helpful in structuring our
solution to the needs of PSD2.

Selection

Exchange S hange Semantic Interpratation Data Presentation Data Exchange
Type agr gnitiva Cognitiva <> Non-cognitive MNon-cognitive = Coanitive Han-oognitive <= Men-cognitve

Informaﬁon Information ltems Information Records Information Reports Analytical Views

Deployment Mainframe/ Service Enabled Fully Distributed Public Networking
Environment Point to Point ClientServer/ESB (Cloud/Container) Considerations

Service Fit for Purpoze Enhanced Security Subscriber Inter-Enterprise
Assurance Base Level Checks Measures Assurance Qualifications

Figure 4. BIAN’s Semantic APl Selection Framework

After this introduction, Guy provided us with PSD2-specific
guidance, by giving us an overview of the different steps he saw
as necessary to carry out the use cases of PSD2: send payment
and check balance. We took those steps and reformulated them
into the diagram shown below in figure 6.

This sort of guidance showed the kind of value-add that BIAN
can bring. IFX and other messaging standards bodies are more
concerned with the messages themselves, not the business use
cases. A group like BIAN was helping in explaining what all the
different steps needed to be for the use cases. Then we were
able to implement some of these steps using IFX in our solution.

As shown in the steps in the figure below, in the send payment
case, the consumer (PSU, the payment service user) first
registers the TPP (third party provider). Then he requests the
TPP to send a payment. The TPP authenticates itself with the
bank, and finally instructs the bank to make the payment.

09

Registration

Request

Execution

s

PSD2 - Peer to Peer Payment

A: PSU registers with the TTP where KYG checks are performed

B: Payer (or payment service user PSU) to TTP/PISP to initiate remote payment

C: Payer requests TTP for aggregated account report

F: TTP executes a Card based payment (CISP) and obtains confirmation of funds available from the bank

G: TTP executes payment transaction with the bank on behalf of the Payer

H: TTP/AISP obtains account details from the bank

on |

I — —
o |
[i

Payment initiation Service Provider Account Information Service Provider

Figure 5. PSD2 use cases: peer to peer payment (left), and check balances (right)

In the check balances case, once again the PSU first registers
with the TPP, and then asks the TPP to check balances. After
an authentication step, the TPP retrieves the balances

from the bank

Of these steps, we needed to determine which would be in or
out of scope for our project. The registration would be out of
SCope, as that pertains to user registration for the TPP only (your
login credentials for Venmo, Mint, etc). However, the request,
authentication, and execution would all relate to our project and
were potentially in scope. Our work on these steps is discussed
further below.

Furthermore, we mapped all these steps from PSD2 using the
BIAN Semantic APl How-To Guide. The results of this exercise
can be found in the appendix of this report.

At this point, we now needed to learn more about the kind of
messages would send, especially in the execution step. We
turned to our partners at IFX to learn more about the messaging
format they could offer...

i

IFX Messages for PSD2

Rich Urban, president of IFX, provided an
introduction to IFX over a number of phone
calls with the CMU team. In particular, he
indicated the right IFX message formats that
would apply to each of the use cases we had
in mind. For sending a payment, he indicated
that we should use the IFX message called
PmtSendRq, which would be acknowledged
by the PmtSendRs message. For checking
balance, we were to use the BallngRq, which
was acknowledged by BallngRs.

All IFX documentation was available online at www.ifxforum.
org. The most important part of the site is BMS, which is short
for “business messaging specification”. The BMS section of
the site can be searched for thousands of available message
specifications. In our case, there were only four messages that
we needed to use, as listed above.

We were also able to download the JSON for these messages
from a Swagger utility on the website. There were a number of
optional fields contained in each message, and we chose not
to use them in our implementation. To remove these optional
fields, we had to manually go through the JSON and strip them
out. As a small feedback to IFX, we would recommend enabling
JSON exports that have the optional fields already removed.

We used all (or most all) of the required fields for each of these
messages. To review field level detail at which we implemented
the IFX messages, we recommend reviewing our code.
Screenshots of the message format specifications of the four
messages we selected are included in figures 7-10.

V]
—

13

8.7.1.1 — Payment Add Request <PmtAddRg>

Tha Paymant Acdd message allows a client to schedule a single paymant, where tha amount is input by tha customar or from a presentad till, The Payment Add message may raference an axisiing
payee or add a new one, by specifying the information within <Remitinfo> <Payesinfo>. If the Payment service provider suppors <CustPayesld:>, the client must specify an existing <CustPayeald>
or include the <CustPayeelnfo> aggregate, but not bath. Whether or not the Payment service provider supports <CustPayeeld>, the <CustPayeeinfo> aggregate may specify an existing standard
payes of create a new fully specified cor transfer payee. It is not possible 1o modify an existing payee within an Add Payment message. The customer may modify a payee via <CustPayeshModRg>.

See the matching response message PmisddRs

Diatatype: Aggregate

Hglir uuin Regured Request lentiler. Sent by o Clont a3 a wnversally unigue entifer for he messags. Used 1o comelats responses
WEN FEqUeats.
Aggregate Cptional Message Request Header agoregate
uumo Oiptional Asyprchronois Regques! dentifien. Senl by a clent b meliee @ response (hal wis asynchonously genersted by &

server, genealy in the case whiene the response would have taken foo long lo build and be abili b bi send
synchronously,

Far more informaton, se= Status

Gt Aggregals Optioral Customer ldentiticaticen Apgregate. This is e idenbilies of e user for wham e request & being isaued. This
alement s equrad I the mwier of the ohjeci[5) Specifed in the request 1S not The user spaciied in <SgnonfRgs For
examge. If 8 CSH or SP saues ihe frequast on benall of e Ser then <Custids 15 requirsd. and must eoniain e

vallie of The user whise request & being sauerd

Aggregals
Bealean

Paymend information Apgregale

Duplicate Chack Ovarmas Fiag Whan set 1o T, requssts that the server nod pariomm dupkicake checking it any is
normally performed The tlient & affrmeng that this is @ new payment teng added

Figure 6. PmtAddRq screenshot from IFX BMS website.

8.7.1.2 — Payment Add Response <PmtAddRs>

The <PmtAddRs> message is used to provide an acknowledgement to a customer-initiated <PmtAddRg>. It is also used in the Payment Audit Response <PmtAudRs> and Payment
Synchronization Response <PmiSyncRs> to communicate to the client that payments have been added by the customer using <PmtAddRg> and by the Pay provider using the customer's
Recurring Payment Models.

See the matching request message PmtAddRq

Datatype: Aggregate

g [iype Jusage | 0
g]

i

Status Aggregate Optional Response Status Aggregate. If this aggregate is absent, <StatusCode= defaults to 0 (zero)

Rauip uuo Requued The entifier of the Request that resufted m this response

MsgRaHdr Agaregate Optional Echoed Message Request Header aggregate.

MsaRsHdr Agaregate Optional Message Response Header aggregate

AsyncRqUID g Optional Echoed Asynchronous Request identifier. Sent by a chient 10 retneve a response that was asynchronously generated by a
server, generally in the case where the rasponse would have taken 100 long to build and be abla to be sent
synchronausly.

For more information, see Status

Custid Agaregate Optional Echoed Customer Identilication Aggregate. This is the identifier of the user for whom (he request s being issued This
elament is required if the owner of the object(s) specified in the request is not the user specified in <SignonRg=. For
example_if a CSR or SP issues the raquest on behalf of the user, then <Custid> is required, and must contain the
value of the user whose request is being ssued

Pmtinfo Aggrega Required Echosd Payment Information Aggregate.

CupChikCverride Boalean Optional Echoed Duplicate Check Overnde Flag

PmiRec Aggregate Required Payment Record Aggregate

CSPRefld Identifier Optional Cuglomer Service Provider Reference |denlifier. <CSPRefid> is used to inquire about a transaction cormespanding

fo a confirmation number that was returned lo the client when the transaction was added or modified When a
fransaction has been modified, only the <CSPRefld> received in the most recent PMPMODRS is valid The use of
an <CSPRefld> from an earber response is Ikely to result in a "ransaction not found” response.

SPRefld Identifier Optional Service Provider Reference |dentifier. Same usage as <CSPRefid>.

Figure 7. PmtAddRs screenshot from IFX BMS website.

7.4.1.1 — Balance Inquiry Request <BalingRq>
Allows clisnt to obtain the balance of an account. The client specifies only the acoount for which 1o retrieve balances. The effective date of the balance is also retumed.

Sae the matehing response messane BallngRs

Datatype: Aggregate

uuin Required Request Idenifier
Aggregats Optianal Message Request Header agaregate.
o Optiarial Asymchronous Redquest Identilier. Sent by a chent 1o fetimve & response thal was asynchronously generated by &
servar, ganerally in the cass whera tha responss would have taken 1oo long 1o build and be able to be sert.
FYnEhrenously, :
For mone information. see Status
Lustig Aggragate Oplional Castomer idenlification Aggregate. This is the idenlifiar of the usar for whom tha reguest s being ssued. This

AlEmuent & required iF e owner of tha objechis) spechiod in Me feouest = not e user specifed in <SignonRg= For
awampls, f a C5R or 5P sues tha request on behalf of the user then =Custid- is requirad. and miust contain the
waua of the user whoss request s baing ssued

[Cmbos Teewws [
I I
DemArriid Aggregate Required X0R Deposit Account idanbic
ComdAcctld Aggregate Required J0R Card Account Identificabion Aggregats
LoanAcctid Aggregstz Required XOR Loan Account ientification Aggregate.
i wr
IncExtBal Booiean Optiana Include Extended Balances Indicator. i True, the response should als incude the <ExtAcciBal- aggregate and

rerturn all available balances for the tvpa of account I False or ormitled, the response should only include the
standard balances for e account in <AcciBal=

Dstvgndilained -Open Enum Optional Prodiled valies Dedvery Method. Default (s Channed

alue must be suppodted in Sanvice Profia
-k

Figure 8. BallngRq screenshot from IFX BMS website.

7.4.1.2 — Balance Inquiry Response <BallngR

Allows client 10 obiain the balance of an account. The effective date of the balance is also retumed.
See the matching request message BallngRg

Datatype: Aggregate

Aggregate Opfionat o Status Aggregats I garegale s absen|. <StalsCode= defmits fo 0 (zero)

U Required The denbiier of ihe Reques! that resulted m this response.

Agarepate Optional Echoed Messags Request Header aogregats.

Agarepate Optianal Message Responss Header aggrecats.

uum Optiana! Echoed Asynchronous Request Identifier.

Aggregate Optiansl Echoed Gustomer Identifcation Aggregate. This is e sentifer of e user for whom the request i baing Issued. This

edamant is required if the ownar of the objecsh specifed in the reque st is nof the user specified in <SignonRg- For
example, i & C57 or SP issuss the mquiest on behalf of the eser then <Custid= is mauired and must contsn the
valug of ihe user whese requast is bang issued

bugin-thock ruguired il message
T 7 S
DepAcctid Aggresgati Aequired XOR Echosd Diaposit Account idenkticabon Agoregate.
CarsAcctid Aggregate Hequireg XOR Echoed Gard Account idantifcation Aggregate
LeanAcclid Aggregate Fequired XOR Echoed Laan Accoint Identcaton Aggregate.
A ——
IncEiBal Boalean Optinnal Echoed Inciude Extended Balances indicator
Deliveryiathod Cpen Enum Opfinnal Echoed Dialivery Method
AcciBal Aggrege Required Repeating Aocount Balance Aggregate:
Extaccitial Adgregate Ophional Repeating Account Balance Ag b
Midalnio C-255 Ophonal Markisting Inlomation

Figure 9. BallnqRs screenshot from IFX BMS website.

14

15

As part of the project, we compared
and contrasted IFX and ISO. Both
are standards to be used by financial
institutions for sending messages,
most commonly payments
messages.

ISO’s 20022 standard is currently used worldwide
with prominent contributors like SWIFT and VISA.
ISO 20022 includes eight parts: ISO 20022-1
through 1SO 20022-8. These parts describe the
metamodel, UML profile, XML schema etc.

for the messages.

IFX promotes messages that are sent in XML

or JSON. There is also built-in capability to
generate a swagger document for these message
structures. IFX can contain ISO elements, if
desired. Based on our experience in this project,
IFX messages are defined and organized in a way
which is easy to read/understand.

Both these standard bodies promote the idea of
“interoperability” across financial institutions. ISO
is currently in broad use, while IFX has support but
is yet to see broad adoption. Both are acceptable
standards for sending financial messages.

Resources for further reading on IFX and ISO can
be found in the appendix.

After working with BIAN and IFX

to understand their frameworks,
standards, and message formats,
we began to collaborate more
closely with PNC. In order to test
out the APIs we were developing,
we needed to be able to simulate
sending and receiving messages to/
from other systems in the bank.

PNC had already set up an environment, called the
API store, which had some open APIs. These open
APIs did not generate IFX compliant messages.
Rather, they returned data in a flat format as part
of a RESTful exchange. For example, a request to

http://apimanager.pncapix.com:8280/
SmartBank-API-Services/V2.0/card/
findByCardNumber/{cardNumber}

Will return details about that card number, if it
exists in the data.

We were able to interact with and test out these
APIs by using the freely available tool “Postman.”
Postman enabled us to create HT TP requests to
APIs in the PNC API store. (Note that the API store
is not used in daily business operations yet at the
PNC Bank. Right now it is a sandbox area where
PNC is exploring how it could deploy open API
solutions in production.)

As shown earlier, in figures 2 and
3, we wanted to focus our work on
the interaction between the TPP
and the bank. If we “zoom in” on
this relationship, there are a few
steps that need to happen in the
communication.

As shown in this figure, first a third party provider
(TPP) would initiate a payment using the RESTful
API that we have built (“API” in the figure). This
could be a form available at an endpoint such as
www.pnc.com/sendpayment. This should only
be available after logging in to your account.

Once the payment is submitted to the AP, the
AP first looks up additional data from other PNC
systems (steps 2 and 3). Once that data has been
retrieved, it makes a call to the Bank Payment
System to make the payment.

Finally, the bank payment system returns a
response to the API (step 5). The AP, in turn, reads
this message, and uses it to generate a JSON IFX
compliant message (step 6). The message will be
the PmtSendRs or the BallngRs.

In our implementation, note that we ended up not
using PmtSendRq and BallngRg. The bank might
want to use these messages when communicating
with internal payment systems. However, as we did
not have that system available to us, we did not
need to send messages to it.

However, PmtSendRs and BallngRs messages are used. The
appropriate message is generated and sent back to the TPP.
What we gain by doing this is that now, the TPP can expect a
consistently formatted response message when it interacts with
any bank. Furthermore, the bank can also choose to archive
these response messages, which may be useful for historical or
reporting purposes.

A 4

[e et e e e e e e e e e e e e e e e e e e
|

1. Arguments E 4. JSON Reg
I
I
I
i
% Bank

TTP I API Payment
I System
venmo | | @ PNC
|
L il

i
|

6.JSONRes | 2 Request 3. Desired 5. Response
| Arduments Data
I
|
|
i
I
|

API Exchange

Figure 10. Message Architecture of TPP, API, and Bank Systems

Implementation

Figure 11. Java files used in our implementation.

Figure 12. Fields of the Bankinfo class.

19

All code is available on Git at this link: https://

github.com/chinthakadd/cmu-bian-starter

We developed and deployed the AP
on our local machines during the
development phase of the project.
The PNC team’s Virtusa consultants
helped us get set up with the proper
IDE and development environment
to work with the PNC API store.

In this section, we describe the different files in the
Java solution that we developed. All files are listed
in the figure at right, a screenshot from IntelliJ IDE.

Reading from the “controller” folder, we have two
types of controllers — PaymentRequestController,
and Card/Dep/Loan AcctBalanceRequest
Controller. The first controller has the logic for
the send payment operation. The second set of
controllers are very similar to each other, and all
handle for the check balance operation. There

is slightly different logic depending on whether a
card, deposit, or loan is being queried.

You will also notice a number of files listed under
the model section. These are used to structure the
IFX response message. For example, a message
might consist of Account, AcctBal, and Bankinfo
objects. To create this message, we could create
an object that contains all three of these objects.
These will be described further below.

One advantage of this design is that Bankinfo,

for example, can be used consistently in many
different contexts. Several different IFX messages
may contain BankInfo. By having a Bankinfo
object, we can enforce that it must contain the
same five fields everywhere it is used. These fields
are shown below. Now, wherever BankInfo is used,
it must have this consistent definition.

BankInfo and other objects are then converted
into the appropriate JSON structure when they
are used.

For our APIs, we needed to choose the appropriate HTTP method to correspond to the
operation. BIAN’s APl How-To Guide was a useful resource for this task. The figure below
shows a mapping between action terms and the corresponding HT TP method. We used
this to perform mappings for the two use cases.

Applicable REST Verbs

PUT; POST

Begin an action including any required initialization tasks PUT; POST

an tional or admir service PUT; POST

nufacture and distribute an item PUT, POST
i JChange the operating parameters for an operational capability ~ PUT; PATCH
Change the value of some (control record) properties PUT; PATCH
|Capture transaction or event details against managed activity PUT; PATCH
[Execute a task or action on an established facility PUT: PATCH

> erform a check, trial or evaluation GET

| [JA=sign or allocate resources or facilities PUT; PATCH

|| JAllow the ion of a tion/activity PUT; POST

Request the provision of some service GET
DELETE

Managed using event frameworks
freport as req d Managed using event frameworks

Figure 13. Action term to HTTP verb mapping.

Mapping for PSD2 use cases:

e Send payment: For this, we need to “Create” a message to send a payment, so we use
the HTTPPUT operation.

e Check balance: For this operation, we need to “Request” a balance, so we use the
HTTP GEToperation.

20

Here, we copy the code and comment on the functionality of a representative
set of the files. First, the PaymentRequestController:

This will take a PUT request,
based on the input in the
RequestBody

Create objects for the
response message

Prepare elements needed to
make call to API Store

Make call and store the
response

21

CardBalanceRequestController:

Format response into IFX format,
using objects created above

Note that formatting of this
message (eg which objects to
include) is based on IFX message
specification

22

23

Responds to a GET request,
and reads in the variables in
the URL path

Create objects for the
response message

Prepare elements needed to
make call to API Store

Make call and store the
response

Format response into IFX
format, using objects created
above.

Note that formatting of this
message (eg which objects
to include) is based on IFX

message specification

<
eV

Using our APIs

In this section we walk through how one can interact with the
APIs. In the screenshots below, we show the APIs running
locally and how to interact with them via the Swagger Ul. Our
code automatically generated a Swagger Ul, since it was built
with the Spring framework. The user can submit data to each
of these endpoints and examine the response messages.

Of course, a TPP would also be able to send data to these
endpoints without having to use the Swagger Ul.

Our APl was also deployed to the PNC API store, where the
interface is somewhat different. However, the functionality is the
same. These screenshots can be found in the appendix section.

ErTET

PSD2 - Payment Execution API

AFL to exetute payments as per IFA standard

Created by Carnegie Melion University - Heinz Coliege

dep-acct-balance-request-controller : Dep Acct Balance Request Controller
lean-acct-balance-request-controller : Loan Acct Balance Request Controller

card-balance-request-controller : Card Balance Reguest Controller wiida 1 Oiperatian i G

payment-request-controller: Payment Request Controller ShowdMide | (Y Dpedatians Bpand Aperasions
IpmtaddRo Ay e AR et
Response Class (Status 200)
iel) Model Schema

i
“eustld®; {
Tcardlogicalfata™: |
“hrend™: CEUEINET,
“rariEsboysham”| “siringT,
“explit™; “string”,
“nase™; “striog®
te
rustioginda®: Tstring’
h =

Figure 14. Swagger Ul in our local deployment of the API. As shown, an AP to send a payment
is selected. Equivalently, the APl can be deployed to the bank’s AP store.

Response Content Type "¢ =

Type

| S AT, -] pmeaddrginput bod T =
“payeeAcctlur”: "USD", ks qinp iy Maodlal Sehers
“payeehcctld”: “12344321°,
"payesdcctTypa’: "Savings", [
"preDt”: "d£4,2817", MU,
"rqUIDT: “TN_RQ ©8L" RISEY
i @ ankTdType®

ptAdaRgInput

Paramater content type: Bpplicabonison # “bankNama®

Reasan Response Madel Header
201 Created
81 Unauthosized
253 Forbidden
204

Try it outl

Figure 15. As shown, we submit data to the APl as parameters in the body of the HTTP request.

http://localhost: 8089 patAddRg

"custloginld®

260

Figure 16. The APl returns data in the IFX-compliant format. (More data could be seen if the
developer were to scroll down.)

26

Conclusions and
Recommendations

In this project, we have shown that
the BIAN and IFX frameworks can
be applied successfully to comply
with PSD2 requirements in order
to enable third parties to send
payments and check balances.

As the banking industry will be required to build
new functionality (open APIs) to comply with
PSD2 requirements, now is an ideal time to
coalesce around a standard method for doing so.
Messages with the IFX format are well-suited to
send response messages to the TPP, as well as
messages from one bank to another. When a TPP
submits a send payment request, it could receive
back a standard IFX compliant message from
whichever bank it interacts with. The bank, in turn,
could send an IFX message from the payee bank
to the payer bank to provide details for the

money transfer.

We recommend that industry partners continue
to explore these opportunities by partnering with
BIAN and IFX when developing their solutions.

29

This project required us to collect information from different
stakeholders, and determine the type of solution they were
asking for. In a fairly short time, we also had to become
acquainted with much previous work that had been done by
other standards bodies such as BIAN, IFX, and the European
Commission (which produced PSD2).

1. Standardize which IFX fields the TPP should be
required to submit

In our current solution, for simplicity the TPP is required

to submit many of the fields needed to produce the IFX
response message. In reality, a number of these fields can
and should be retrieved from within the bank’s own systems.
(For example — branch name. The TPP would not know this,
but the bank would. However, not all of this data was easily
available from the API Store made available to us.)

We suggest that industry leaders determine which fields
should be required from the TPP, and which fields can be
supplied by the bank. If feasible, this classification could
even be included with the IFX standard itself.

2. Clarify which parties should create an IFX message

(TPP, bank, or both)

Industry leaders should also clarify which parties need to
create an IFX message. Here is our current understanding,
which should be reviewed.

It is currently not clear if the TPP would be required to
submit an IFX-formatted message, or if just the banks should
communicate using this standard. We believe the TPP could
be asked to format its message in a specific way, but there
may also be concern about putting that burden on the TPPs.

Furthermore, the industry should define whether banks
should use IFX for messages to other systems within the
same bank (eg PNC to PNC) and to other banks

(eg PNC to Chase).

3. Consider developing context-specific guidelines for

message formats

Consider that there are three distinct messaging contexts:
TPP-bank, intra-bank, and bank-to-bank. To use real names
as examples: Venmo-PNC, PNC-PNC, and PNC-Chase.

As we worked on this project, it became clear that each

of these contexts would have different expectations in

terms of what information would be sent or received. We
recommend incorporating this distinction into either BIAN or
IFX standards as appropriate. “Message context” seems to
be an important topic that a PSD2 solution much take into
account.

. Review required/optional fields in IFX

In its documentation, IFX has marked fields in the messages
as either required or optional. Based on the needs
discovered during further implementation work, these
required/optional fields should be updated as appropriate.
For example, if a field currently marked as optional is
discovered through discussion and implementation to be
required, then this should be updated in IFX documentation.

. Clarify the BIAN How-To Guide sections on
deployment environment and service assurance

When reading the BIAN How-To Guide, we were not able to
understand the framework’s guidance around deployment
environment and service assurance. We talked through it on
the phone and were eventually able to understand. However,
perhaps some additional wording in this section would be
helpful to future users of the guide.

30

31

Suggestions for Future Work —
Development Work

1. Develop process to lookup necessary fields within
bank

The banks will need to develop a process to look up the
relevant information from within their systems to populate IFX
fields not provided by the TPP.

We also note that, in this project, we would have used other
APls to communicate within the bank. However, depending
on the implementation, the bank in question may just be able
to look up necessary information from a database table. In
such a case, interaction with an APl may not be required
since the data is internally available.

2. Build solution for messages between banks

In this project, we have not worked on the messaging from
one bank to another. However, if there is to be payment
between users of different banks, such a message would be
required. We recommend formatting this message in an IFX
format. The PmtSendRg messagemay be the appropriate
message to use in this case.

Another possibility would be to send data between banks in
the message body of an HTTP PUT or GET (a RESTful API).
However, since banks will likely be familiar with IFX, and also
since this message body may become rather long (longer
than what we would expect from a TPP), it may be preferable
to send messages between banks in IFX formats.

3. Implement authentication step of PSD2 (OAuth)

We also have not implemented the authentication step required
in PSD2. Through our conversations with PNC, we determined
that an OAuth implementation would eventually be necessary to
implement PSD2. As the work required would be fairly intensive,
it was deemed out of scope for our project.

We did create a prototype of what the OAuth interaction might
look like, and we included this as part of the Ul shown in our
demo. However, we opted not to include this in our code
submission as it was just for simple demonstration purposes.

Mapping of PSD2 steps to BIAN’s Semantic API

Selection Framework

Standard |nterface Type

Payer to TPP/VISP to initiate remote

ation [ary medul

[_Interadtie data exdir |

irteractive dafa extract

P50 provides encrypted authantication
data 1o the TPP to access the

Conversation [any medial

the bank

TPP/AISP obtaing account detalls from

TPP Ereutes poyment fransaction with

the bark an belalf of payer

W Eralion [amy medis]

Int eractive data cairact

Corversation {any media]]

= dla extract

| [inforrnat

ormaticn nrms
a iecondy

Data reco

Dala wlemen

| irformation fLoms

Dializ zapkure Tarm Difa capkure [orm Data capture foem
: [irieractive de g preseniation Tntr=c the duskan presentation | [Cinteracine desin presentition
Tiata Fu [Data Publizhing Tiata Publishing | [[Datarubl |
Tranzactin:
Fill ranifer FlL Lrans e Filu Uansler

wlog (any media) Narratve

g fany miedin]

[Wecordeig fany medial

Tog [any media)

Warratove log [any madia)

Recarding (any media]

Rrcorong (any medial

Aralyss

| [userint

sarvice directany]

1 [_Eneapeulaton

5 T1[_ser interface

Analysic

Usar interface

it Exchargs mrerface | Dats exchange interface

clory

“senice disciony 1
Frcapsulat ion

Cata mhange nrertace
esslon manage meal

LUzer ntorface

| [Data exchange interface

Sesian management

service dirgctony

cansulaton

IOy &

SLUTANCE ||

SETurly BSSUrance

SECUNTY S55uTaNCe

Approprate

Ap[rapriate

Faten |

prap
aligned qualified coordinated |

Alignad fquaite:

Al gred/gualiied/coordinated

Figure 17. PSD2 use case: send

Standard Interface Type

payment.

Payer requests TPP for aggregated
account report

[Conversafion [any media]]
[interactive data extract 1

[Cunversaliun'rany media'] |

PSU provides encrypted authentication

data to the TPP to access the bank

[Conversation [any medi

[Interactive data extract

safion fany media]]
[Interactive data extract

TPP/AISP obtains account details from
the bank

Conversation any media
Interactive data extract

Data capiure form
Interactive design presentation
Data Publishing

Interactive design presentation
Data Publis ing

Transaction exchange
File transfer

Transaction exchange
File transfer

Data capiure form]
Interactive design presentation
| OataPublishing__|

[Data Publishin;

Transaction exchange
File transfer

Data capiure form
Interactive design presentation
File transfer

Information items
Data elements
Informaticn forms

Information items
Data elements

Information forms

Information items

Information forms

Data records

Data records

Data records

Narrative log [any media)

Marrative log [any media)

Narrative log (any media)

Information items
Data elements

Infarmation forms
Narrative log {any media)

Recording [any mediaf

Recording [any media)

Recording (anvr media]

[_Recording {any media]

Analysis Analysis Analysis Analysis
User interface User interface User interface User interface

Data exchange Interface
Sesslon management

Data exchange interface
Sesslon management

ata exchange interface
Session management

Data exchange interface

Session management |

I

Service directory Service directory Service directory Service directory |
[Service exchange Service exchange hang
[Encapsulation] [Encapsulation] Encapsulation [Encapsulation]
Securily assurance Securily assurance | [Security assurance | [Security assurance |
Base level CIA Base level CIA
Base level auditability [(Baselevelauditability]

Enhanced CIA
Enhanced auditability

Enhanced ClA

Enhanced auditability

| Enhancedcin]
Enhanced auditability
L d

Enhanced CIA

Enhanced auditability

Authenticate/autharized Authenticate/authorized Authenticate/authori Authenticate/authori
Appropriate Appropriate Appropriate Appropriate
Aligned/qualified/coordinated Aligned/qualified/coordinated | Aligned/qualified/coordinated | Aligned/qualified/coordinated |

Figure 18. PSD2 use case: check account balances.

32

33

Process mapping for APl Generation

|
I
|
}
Map to

W} Understand M;zr:;;li':N appropriate Design Implement Publish
] Business standard and Deploy APl on PNC

APIs How- the API
| Use case To-quide (IFX, the API API store)
1‘ 9 1S020022) P
I /
% T Repeat for all the steps of PSD2 ’/
|
|

Figure 19. Business process for building solutions to the different steps of PSD2

API deployed in PNC API store

2F "\JC 3 Publisher

APIS @ G0 BACK

APPLICATIONS
FORUM

STATISTICS

Version: YW1d
By: et min

Updated: D8/ May,/ 2077 16:29.06 PM UTC

Status:
Rating: Tririmirfr @
Crverview APl Console Dopumerntation U
Lz DefauliApplication

Heine [o e TP,

Figure 20. Home page for the payment execution API in the PNC open API store

Process mapping for APl Generation

dep-acet-balance-request-controller : Dep Acct Balance Request Controller

= T
s

card-bal quest ler : Card Bal Request Controller

_ CandAcctBalanceRaquast

lean-acct-balance-request-controller : Lean Acct Balance Request Controller

“ L ¥ LoanAcralanesfeques!

ShowHie | UstOperations Expand Operations

pay quest: ller : Payment Req Controll
[mace 1@t - O LPaumentEyarfinndRPIAM N Ao vesainse WA N1

Figure 21. Interface in PNC APl store. By clicking in to one of these endpoints you can then send a request with
the appropriate parameters.

Sources and further reading on IFX and ISO comparison

https://www.is020022.org/the is020022 standard.page

https://en.wikipedia.org/wiki/ISO 20022

https://en.wikipedia.org/wiki/Interactive Financial Exchange

34

https://www.gtnews.com/articles/adoption-of-iso-20022-messages-by-ifx-forum/]
https://www.gtnews.com/articles/adoption-of-iso-20022-messages-by-ifx-forum/]
https://www.iso20022.org/the_iso20022_standard.page
https://en.wikipedia.org/wiki/ISO_20022
https://en.wikipedia.org/wiki/Interactive_Financial_Exchange

o
S
Q
c

8

e

3
(2]
o
g
=
<

	Executive Summary
	Acknowledgements

	Project
Objectives

	Objective 1: Comply with PSD2
	Objective 2: Demonstrate a solution built on BIAN, IFX, and PNC

	Project Methodology
	PSD2 Use Cases
	BIAN’s Contribution
	IFX Messages for PSD2
	Comparing IFX and ISO
	Interacting with PNC
	Solution architecture

	Implementation
	Introduction and file description
	Choice of HTTP method for RESTful API
	Code Walkthrough
	Using our APIs

	Conclusions and
Recommendations
	Lessons Learned
	Suggestions for Future Work –
Standards and Frameworks
	Suggestions for Future Work –
Development Work
	Appendix

