il

=BIAN

Banking Industry
Architecture Network

Banking Industry
Architecture Network

BIAN
How-to Guide

Applying the BIAN Standard






BIAN How-to Guide Applying the BIAN Standard V6.0

Organization

Authors

Role Name Company

BIAN Architect Guy Rackham BIAN

Status

Status Date Actor Comment / Reference
DRAFT January 2018  Guy Rackham Restructure, Figures
Approved Architectural Committee

Version

No Comment / Reference Date

6.0 First edited version January 2018

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 3 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

Copyright
© Copyright 2018 by BIAN Association. All rights reserved.

THIS DOCUMENT IS PROVIDED "AS IS," AND THE ASSOCIATION AND ITS MEMBERS, MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS DOCUMENT ARE SUITABLE FOR
ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

NEITHER THE ASSOCIATION NOR ITS MEMBERS WILL BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR
RELATING TO ANY USE OR DISTRIBUTION OF THIS DOCUMENT UNLESS SUCH DAMAGES ARE
CAUSED BY WILFUL MISCONDUCT OR GROSS NEGLIGENCE.

THE FOREGOING DISCLAIMER AND LIMITATION ON LIABILITY DO NOT APPLY TO, INVALIDATE,
OR LIMIT REPRESENTATIONS AND WARRANTIES MADE BY THE MEMBERS TO THE
ASSOCIATION AND OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE ASSOCIATION.

Page 4 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

Table of Contents

1 BIAN How-to Guide i Applying the BIAN Standard ..............ccccvemimiiiiiiiiiiiiiiiiiiiiinenns 7
1.1 Document INTFOTUCTION. ...ttt ettt e e 7
1.2 BIAN How-to Guide i Applying the BIAN Standard ..., 7

2 Using BIAN Specifications as a high-level Implementation Design .............c..uvuuee... 11
21 Service Oriented Architectures..&.t.he.lBenef it
2.2 Business to Technical Architecture i Mapping Service Domains............cccccceeeeeen... 16
2.3 Service DOMAIN CIUSTEIS ..ottt 21
2.4 Mapping Implementation Level Functionality to a Service Domain .............cccccc...... 23

24.1 Extending the functional definition of the Service Domain .............cccccceeeeeeeee. 25
242 Mapping service operations t0 MESSAGES.......cccvvviiieieeieeeeeeee e 26
2.4.3  SEMANTC APIS. ..o 30
2.5 Applying BIAN in different technical architeCtures.............ccccccovvviiiiiiiiiiiiiiiiiii, 30
25.1 Type 1- Conventional (legacy/core) system rationalization............................. 31
2.5.2 Type 2 - Host renewal/ESB integration and application/system assembly....... 34
2.5.3 Type 3 - Loose coupled distributed/cloud systems .........ccccocovviviiiiiiiiiieeenniiinns 39
2.6  Specifying Point Solution Requirements i Accelerator Packs.............ccccvvvveeeenennn. 44
26.1 Business Case DevelopmeNt .........ooooiiiiiiieeeeee 45
2.6.2  Select and Amend BUSINESS SCENAMO(S)...uuuuieiieeiiiiiiiiiiieieeeeeeeeeiiiee e e e e e e eeeanns 46
2.6.3  Develop a Wireframe mMOdel .............uuuuiiimiiiiiiiiiiiiiiieeeeee 47
2.6.4  Define the Implementation REQUIrEMENES...........ccoiiiiiiiiiiiiie e 48
2.6.5 Map and Assess Existing Systems/Candidate Packages ..........cccccceevveeenrnnnnnes 50
2.6.6  Customization/DeVelOpPmMENt.........coiiiiiiiiieice e 53
2.6.7 MIgration Planning ........ooooooiiiiiiie 53

3 Assembling a Representative Enterprise BlUeprint..........coooviiiiiiiiii e, 70
3.1 Select Service Domains that Match the Enterprise ACtVItY ...........ccooeviiiiiiiiieeieninnns 72
3.2 Adapt the General BIAN Specifications as NeCeSSarY ...........ccuuvvvviiiiiiiiiiiiiiiiiiinnenen, 72
3.3 Assemble Service Domains in a Structure Matching the Enterprise......................... 74

4  An Enterprise Blueprint is a Framework for Analysis .......cccooooviiiii, 78
4.1 The BIAN Specifications can be augmented............cooooeviiiiiiiiiiiii e 79
4.2 Track Business and Technical Performance...........ccccvvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 82
4.3 Overlay Resources to ldentify Shortfalls ... 82

ES N ©o ] o Yo 11 F=] Lo 1 o PP 85

Table of Figures

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 5 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

Figure 1: Applying the BIAN standard CONteNt..............ceiiiiiiiiiiiiiiicee e 8
Figure 2: Projects split between point and enterprise SOIUtIONS...............uvviiiiiiiiiiiiiiiiiiiiiinns 10
Figure 3: Mapping Business Applications to Service DOmains.................euuveiiiiiiiiiiiiiiiininnnn. 17
Figure 4: Aligning utility and common solution application modules to service domains ....... 19
Figure 5: Service Landscape with shared and common solution overlain .................ccceeveeeee 20
Figure 6: BIAN Service Domains related t0 MiCro-SErVICES. ..........uuuuuururmmmriiiiiiiiiiiiiininnnnnnnnees 21
Figure 7: Core banking Business Application CIUSTEN ..........cccovviiiiiiii e, 23
Figure 8: Service Domain broken int.o..a.f.8BIncti ona
Figure 9: Using BIAN Service Domain partitions for COmpariSoNs .................eeeveveeeemeeeennnnnnns 32
Figure 10: Externalizing Service Domains in an appliCation....................ueeeeiiiiimiiiiiimiiiiinnnnn. 34
Figure 11: The use of BIAN Service Domains to define a service directory for the ESB ....... 36
Figure 12: Mapping the ESB to host data StrUCIUIES.............uuuueiiiiiiiiiiiiiiiiiiiiiiieieiineeeeeeieneees 38
Figure 13: ESB solutions integrating host and cloud based service solutions....................... 39
Figure 14: Advance 'Cloud' technology SOIULIONS...........coiiiiiiiiiiiiicce e 41
Figure 15: Matching service operations to the required level of precision.............ccccccvvvenen. 43
Figure 16: Cloud based services for a Relationship Management Service Domain .............. 44
Figure 17: Example business scenario With rules ...............ooooiiiiiiiii e, 46
Figure 18: A payment transaction mapped on a Wireframe VIieW ..............ccccceeeeeieeeniiiiviinnnnn. 47
Figure 19: The completed payments area Wireframe (example) ..........ccccovvvmiimiiiiiiiiiinnnnnnns 48
Figure 20: Feature list for a Service Domain - Customer Credit Rating..................uuvvvvinnnnnn. 49
Figure 21: Mapping candidate systems to the feature list of a Service Domain .................... 51
Figure 22: Overlaying current systems on a Wireframe model...............cccovviiiiiiiiiiiiiiiinnnnnnns 52
Figure 23: Example hygiene factor @analySIS ..............uuuuuuuuummiimmiiiiiiiiiiiieiiinieiieieineneenneees 53
Figure 24: Summary table of the BIAN API levels of sophistication .............ccccoeeeeeeiiiiiiinnnnn.. 55
FIgure 25: LeVEl 1 - [AYOUL ........uuuiiii et e e et e e e e e e eaaeaa s 56
FIQUIE 26: LEVEI 2 TAYOUL ...ttt 57
FIQUre 27: LeVEI S IaYOUL .......oeiiiiiii e e e e et e e e e e e e e eeraaa s 58
Figure 28: The Service Landscape with Open API candidates ............cccoovviviiieeiieeeeiiiiviinnnnn. 59
Figure 29: Extended Service Domain Specifications (EXCel) .............uuvviiiiiiiiiiiiiiiiiiiiiiiiiiinns 60
Figure 30: Wave 1 Wireframe @XamPIe .............uuuuuuuuuuueiiiiiiiiiiieiiiiiiieeieenensneenenennnnneneeeeennnnene 61
Figure 31: Mobile Access Wireframe with time dependencies ............ccoovvvviiiiei e, 62
Figure 32: Extended BUSINESS SCENANO ........uuuuuiuiiiuiiiiiiiiiiniiiniseeeeeeaneenennesnennesesnneeeeeeneeeenneee 63
Figure 33: Service Operation definition (EXCEI)...........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeees 64
Figure 34: Level 3 with contact points highlighted...............cooiiiiiiii e, 67
Figure 35: Level 3 - Expanded Customer Access Platform..........cccooooeiiiiiiiiiiinn, 67
Figure 36: M4Bank 'Value Chain' Business Area and Business Domain layout.................... 70
Figure 37: From the conventional Service Landscape to the Value Chain layourt.................. 71
Figure 38: Three steps in developing an Enterprise BlUeprint.............ccoovviviiiiiiniceeeiicviiinnn. 72
Figure 39: Combining and duplicating Service DOMAINS.............uuuuruuummmmimiiiiiiiiiiieniinenienn. 74
Figure 40: Two value chain elements representing different lines of business...................... 74
Figure 41: Two lines of business connected to a regional operation..............ccccoeeeeeieeeiennnnn.. 75
Figure 42: M4Bank with local units, regional and head office reporting................cceveeevinnnnnn. 76
Figure 43: Mapping product and customer types to segmentation VIEWS .................ueevveennnnns 77
Figure 44: Example attribDULIONS ........cooiiiii e e e e 80
Figure 45: Attribution quadrant with an attributed value chain element.................cccccccnien. 81
Figure 46: Example approaches associated with an attribution .................cccccvvvvviiiiiiiiiinnnnn. 81
Figure 47: Systems and operational cost & performance MeasUres ................eeuvvreeveemennnnnnns 82
Figure 48: Overlay of systems on an enterprise blueprint revealing shortfalls....................... 83
Figure 49: BIAN designs applied to point & enterprise SOIUtiON...............uvuvvviiiieiiiiiiiiiiiiiiinnns 84

Page 6 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

1 Bl Alow o GUiAgpe® |l yi ng t he rBIl AN

1.1 Document Introduction

The BIAN standard defines generic business capability partitions (Service Domains)
and their semantic service operations. In order to map these standard designs to a
specific organization they need to be selected, adapted and assembled to match the
operational scope and structure of the organization and its underlying business

St a

applications. Bl AN6s high | evel «c¢onceamagpeddolmoreef i ni t i

detailed implementation level technical designs. This third document of the BIAN
How-to Guide presents the current guidelines for applying the BIAN designs in
different business and technical environments and situations.

This document is continually revised to reflect deployment insights gained between
the major Service Landscape release cycles. With this release a related guide
covering the use of BIAN to support API development has also been produced.
Extracts of that guide are included in this guide for ease of reference.

1.2 BIAN How-to Guide i Applying the BIAN Standard

This final document of the BIAN How-to Guide series explains how the BIAN
standard can be used in deployment. As BIAN rapidly adds content to the model
more experience is gained and new approaches are developed that are reflected
back into these guidelines. The guidelines outlined in this document present the
current view on different possible deployment approaches. These and new
approaches will be refined and expanded as BIAN and BIAN members use the
standard.

Since the last version of the How-to Guide there have been several significant
implementation projects and initiatives that have leveraged and extended the BIAN
model. These projects have formed the basis for the revisions and updates included
in this latest version. For some of these projects related case studies and white
papers can be found on BIAN.org. Specific additions made with the latest release
are:

1. The specification of the Service Domain and its service operations has been
extended in order to add precision and enhance the content of the service
operations. The extensions have been defined in close coordination with
Bl AN6s Semanti.c API I nitiative

2. BIAN has embarked on defining the BIAN Business Object Model (BOM). This
effort is also closely integrated with the BIAN API initiative. The BIAN BOM is
informed by the industry standard ISO 20022 model

In addition there are significant on-going activities within BIAN that are likely to be
reflected in the next cycle or the guides. These include:

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 7 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

1. The definition of a business capability view of the BIAN Service Landscape i
this view will help business practitioners access the standard when the roles of

the Service Domainds are not intuitive
business value and performance in the context of specific business
capabilities

2. The definition of a vendor agnostic application architecture view of the Service
Landscape i this view will provide a structured way to map the business level
BIAN designs to the various aspects of more detailed application architectures
in a way that is agnostic to any one particular implementation, but also that
supports traceability between physical solutions

The intended audience for this document is the business and technical architects of
the BIAN membership and any individual or organization seeking to apply the BIAN
designs in practice. As with other documents of the How-to Guide series, some of the
topics covered here from a deployment point of view are revisited in the other
documents of the How-to Guide from their respective viewpoints.

Approaches and techniques are being defined
to apply the BIAN standard to any enterprise

Use the BIAN model as a high level
implementation design for different

technical environments and for

bridging between them
| 1 | | | |
17 Translating 31 Specifying 17 Select the a7 Plsiiyie e 17 Add detail to 31 Use the
Bl AN6s hi ¢gh] Ilpoinesblution BIAN Service duplicate business the BIAN model, framework to
semantic designs requirements and Domains that are capabilities in an map to other overlay current
to implementation semantic API needed organizational standards/quels and candidate
level requirements designs 6blueprin{o and ac_id Service resources to
Domain attributes identify
T~Devetoping sh(_)rlfallslopportu
technical specs. 27 Adapt the nities
3.1 generic BIAN
Core/Host/Legacy designs as may be 21 Use the
3.2 ESB Enabled necessary blueprint to define
3.3.Qloud & Micro- (specialise, copy/ and track
combine Service business and
Domains) systems
performance

Figure 1: Applying the BIAN standard content

As can be seen in the above overview Figure, the deployment approaches are
explained in three main sections.

Using the BIAN model as a high-level implementation design i the BIAN
business architecture model needs to be related to more detailed systems
architecture views for implementation. This complex topic is broken down as
follows:

SOAT the benefits and stages of adoption

Relating the BIAN business model view to business applications
Service Domain clusters

Adding detail to the BIAN business architecture specification

Mapping the BIAN Service Domain in different technical environments

aokrwnE

Page 8 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

Type 1 - Conventional (legacy/core) system rationalization
Type 2 - Host renewal/ESB integration
Type 3 - Loose coupled distributed/cloud and micro-service
architectures
oint Solutions T steps and templates used to apply the BIAN designs
emantic API designs

w7 E g

6.
7.

Building an Enterprise Blueprint i the BIAN Service Landscape contains

one and only one of each identified Servic
f ramewohrek 6Ser vi ce Domains can be Ihhought «
order to assemble these building blocks into a representative model of a

specific enterprise i the enterprise blueprint - three steps are defined:

1. Select/filter Service Domains to match the range of activities at the
enterprise.

2. Specialize/adapt service domains to reflect specific needs/behaviors of
the enterprise.

3. Duplicate and arrange Service Domains to match the organizational
structure of the enterprise.

An enterprise blueprint contains the selected Service Domains some time
duplicated and then set out in a structure reflecting the structural make-up of
the enterprise. This includes the way the business chooses to segment the
market. The way the BIAN Service Domains can align to different types of
bank and their associated market segmentation is discussed

Using the Enterprise Blueprint for Planning & Analysis i because the

BIAN Service Domains define business roles that are highly enduring( 6 wh at 6
they do does not change, Ohowé, O6whend an
business practices and solutions evolve) an enterprise blueprint assembled

using Service Domains is highly stable over time. As a result it provides an

excellent framework suited to a wide range of planning and analysis activities

In past internal BIAN discussions and earlier versions of the How-to Guide a number
of general types of projects or initiatives were identified that could leverage the BIAN
standard. The types of projects aligned to the two general categories of deployment,
as outlined in the next Figure::

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 9 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

Targeted Point Solutions Enterprise Analysis Solutions

Assessing or Implementing a Point Solution i A targeted solution for a
narrowly scoped aspect of the business as might be supported by a single
application and modeled using a collection of representative business scenarios
to identify the involved Service Domains.

Product Launch i An initiative to cover the specific activities that need to be
coordinated and procedures followed with the development and deployment of a
new productor a significant extension to an existing product. This would include
development, training, cutover, customer updates.

Core Systems Repurposing i An initiative using the BIAN Service Domain and
service operation specifications to renew or repurpose an existing application.
The would include specifying and service enabling key service operations to
support wider access and possibly asp
Vendor Solution Alignment i Match and select vendor solutions for an existing
or new business requirement. The motivation differs for banks and vendors:

For the Bank i define required functions and interfaces & supplier standards

alignment

For the Vendor i ease of integration and greater re-use through standard interfaces

Application Portfolio Rationalization i Using the enterprise blueprintas a
framework to map the application portfolio to reveal gaps, overlaps and mis-
aligned applications. Because the Sevice Domains define discrete, non-

overl apping partitions, mappedfor-appkdc

Mergers & Acquisitions i Merger activity is similar to application portfolio
rationalization with one additional consideration. Attributions (such as a Service
Domaindés cost sensitivity, security o
select between competing applications from the merged organizations

Investment Planning i Using an enterprise blueprintassembled from Service
Domains to assess existing capabilities, define target capability requirements,

operational characteristics and performance goals and to target investment to

address identified shortfalls.

Outsourcing/In-sourcingi Bl AN Service Domains def
business capabilities assuming their service dependencies are fully supported.
Usualy Service Domains will be outsourced in groups rather than individually. An
enterprise model can be used for a cross-organization assessment.

Figure 2: Projects split between point and enterprise solutions

The @ooint solutionsbare addressed by the range of topics covered in the first main
section of this guide: flsing the BIAN model as a high level implementation designa
The enterprise solutions are then covered in the second and third sections i
fBuilding an Enterprise Blueprintoand fiJsing the Enterprise Blueprint for Planning &

Analysisa

As BIAN members undertake implementation projects leveraging the standard BIAN
will continue to provide case studies when possible for review at www.BIAN.org and
the experiences gained will be used to continually expand and refine these
deployment guidelines and other more specific guidelines as necessary.

Page 10 of 85

© 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany

BIAN



BIAN How-to Guide Applying the BIAN Standard V6.0

2 Using Bl AN Spechf gteavteilons as
| mpl ementati on Desi gn

BIAN designs can be extended and used to define systems requirements for many
types of solution implementation projects. The BIAN standard is a business
architecture level model that defines a type of service-oriented architecture (SOA). A
SOA captures the business activity as a collection of collaborating operational
service centers. It might be expected that the only type of systems architecture that
could be linked or derived using the BIAN model would correspondingly be service
oriented.

There are several significant operational advantages in service based systems
design. But the BIAN business architecture provides valuable insights and design
structures for most of the prevailing technical environments found in banks (as
described in more detail below).

This section addresses the considerations and approaches for interpreting the BIAN
standard in solution design and implementation. It is structured into a number of sub-
sections as follows:

1. SOAT benefits & @xternalizationdi there are benefits for adopting
service based designs at the technical systems level and at the higher
business architecture level defined by BIAN i these are outlined. The
benefits can be associated with the degree or level to which the service
oriented concepts are adopted in the application architecture. In this
guide we informally consider three stages/levels of adoption. These
levels are used to explain an important BIAN concept of
60 e xt er n ahidh is kel o ensude Service Domains enforce good
data and function encapsulation.

2. Business to Technical Architecture 1 Mapping Service Domains 1
the BIAN Service Domain is a conceptual design of a business
capability partition that is defined in terms of its business function and
the service operations it offers and consumes. This business capability
partition can be mapped to the supporting business applications and
physical systems in various ways

3. Service Domain Clusters i a clusterorepresents a collection of
Service Domains as might map to a business application. Different
roles for the contained Service Domains are defined to help manage
the service dependencies that define the external boundary of the
application

4. Adding detail to the BIAN business architecture specification i
the BIAN standard and supporting artifacts provide a high level
specification of the core functionality, business information use and
service operation boundary of Service Domains. With the latest release
an additional level of specification has been added to the Service
Domains. The business architecture specifications provide an
organizing framework for adding the additional layers of detail needed
to specify systems requirements and implementation designs. These

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 11 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

layers of detail can be considered in terms of application logic,
information/data and communications.

5. I nt er pr et idiffgrensteahsicalienvironments i as noted
earlier, in the How-to Guide series we define three informal
stages/levels of SOA adoption. These indicative levels have been used
to consider how the BIAN standard applies in the three main,
fundamentally different prevailing technical architectures found in most
banks today

6. Point Solutions i sets out the general steps that can be followed
when leveraging the BIAN business architecture in the context of a

Opoint solutiond. Tommeworkingnemplaledand descr i
model views that have been used in recent BIAN implementation
projects

7. Semantic API Initiative T this initiative is using extended BIAN
specifications to define high-level API designs. These designs can be
applied at levels of sophistication corresponding to the three prevailing
technical architectures described earlier

2.1 Service Oriented Architectures & the Benefits of

OExternalizati ono

The benefits of adopting service oriented architecture (SOA) approaches in systems
design and implementation are well understood documented. In the How To Guide 1
Creating Content the generally accepted benefits and those more specifically
addressing the BIAN approach are referenced. They are summarized here for quick
reference.

The general IT systems related benefits for adopting SOA as described in detail by
the Open Group can be paraphrased as follows:

- Service i the adoption of services in the systems architecture can improve
information flow, help expose embedded functionality and offer greater
organizational flexibility.

- Service re-use i service based software leads to lower software
development and management cost.

- Messaging 1 has a wide range of positive impacts including configuration
flexibility, better monitoring and intelligence, greater control and security.

- Complexity and Composition i services can simplify software supporting
more complex, adaptive and more easily integrated solutions.

The SOA benefits described by the Open Group relate to the impact on the
development, performance and fit-to-purpose of software solutions. BIAN applies the
SOA concepts at the level of business architecture 1 defining the operational
capability partitions and interactions that characteris operating practices within the
bank rather than the specific mechanics of their supporting systems. Some of the key
business architectural design properties that BIAN implements include:

Page 12 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

- BIAN Service Partitions are Discrete i the business purpose of a service
partition is unique, non-overlapping and discrete.

- BIAN Service Partitions are collectively comprehensive i BIAN seeks to
define a complete set of service partitions. All possible banking activity can
be modeled using the identified Service Domains

- BI AN Service Part iittheSenvike Doman sdppoltseame nt al 6
single business purpose. They are not made up of smaller service
domains, instead the collection of identified Srvice Domainsformsa O peer

A

set o.

As a result of these specific operational design properties the BIAN SOA provides
additional opportunities when used better to align the underlying business
applications:

- Operational re-use: the unique operational capabilities of individual
Service Domains can be widely accessed across the enterprise increasing
operational capability re-use, concentrating scarce and/or specialized
resources and improving resource utilization/leverage.

- Increased operational flexibility: as more business functions are made
available through shared services, changing business needs and
operating business models can more readily be supported through service
realignment/re-use. In time these might in cases be offered by external
parties

- Reduced business information inconsistencies and fragmentation: the
SOA partitions act as the single source for the business information that
t hey 0 Jlhiswpmpertyds.used to reduce inconsistency and
fragmentation as Service Domains maintain an autonomous view of their
own business information.

- Performance optimization: each service partition fulfils a narrowly defined
business purpose so its internal capabilities can be optimized for that
specific behavior

- Support for distributed systems solutions i because the Service Domains
define discrete business capability partitions that fulfill the full life-cycle of
their role they define highly encapsulated entities. These partitions are
well suited for distributed environments such as the cloud where access
to a shared/centralized database is not always a practical option

The building block of the BIAN SOA is the Service Domain i it is a conceptual

specificationof a functi onal partition. A critical
definition is to ensure effective encapsulation. In order to define properly

encapsulated designs it is important to clearly distinguish between functions that a

Service Domain performs directly (using its own internal capabilities and functions for

which it still retains the ultimate responsibility but that it relies on other Service

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 13 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

Domains to execute through making delegated service calls. The design approach to
determining what functionaltys houl d be del egated is referrect
within BIAN.

Def i ni ng BERBdrmnalNd@isndapproach

Externalization is an approach used to determine what a Service Domain does itself
and when it calls on the services of another Service Domain. Externalization ensures
that each Service Domain performs a single discrete function and so enforces good
encapsulation. .

The way a Service Domains is scoped out is described in detail in the How-to Guide

i Design Principles & Techniques. Insummarya Ser vi ce Domai nbés busi
orrolecombi nes a type of commerci al behavior (6
instances of a type of asset. This role is characterized byt he Ser vi ce Domai n
6cont r ol anmeehansm tha it uses to keep track every time it performs its

role from start to finish.

For example there is an &mployee As si gnment 6 Service Domai n.
commercial behavior is assigning work and the asset is the employee (actually the

employee® work capacity to be precise). The Service Domain covers the processing

logic and governs the business information needed to handle all work assignments

through their full life-cycle. A single control record instance is used to make, track

and report on an individual employeed work assignments.

In order to fulfill its business role a Service Domain may need to call on a wide range

of other specialised Service Domains for many different reasons. For example the

Employee Assignment Service Domainmayneedt o check the empl oyeed
qualifications for a proposed assignment. Employee certification is a different

specialized function. So the Employee Assignment Service Domain delegates the

empl oy eeb6s assssmantftoanotheriService Domain i i.e. the certification

function is @xternalisedd

In summary the functionality contained within and business information governed by
the Service Domain needs to be limited to the logic and information needed to
address the life cycle of its own control record instances/subjects directly. Any other
functionality should be external, i.e. accessed through delegated services from some
other suitable Service Domain.

The concept of externalization can be clarified by comparing it to more conventional
sub routine calls that behave in a similar way but are not used specifically to enforce
proper encapsulation:

1 Responsibility allocation i responsibility is specifically allocated with an
externalized service call as follows: the responsibility for confirming that the
call is appropriate in the first place, subsequently making the call, accepting
and acting on the result remains with the delegating Service Domain. The
responsibility of the called service provider is only to deliver to the actual or
implied service agreement.

Page 14 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

Assigning responsibility in a delegated exchange is an important aspect of
service design and is necessary to protect the principle of encapsulation. A
service provider controls the delivery of the service offered. They must make
clear the nature/performance properties of the service they offer in order for
the service consumer to make an accurate decision on the suitability of the
service for their particular need. The service consumer retains responsibility
for their decision to use a particular service.

For example a person that uses a taxi service to get to the airport can
reasonably expect that the taxi is well maintained and fuelled-up. But what if
the traffic is particularly bad, or the taxi gets involved in an accident or the taxi
suffers a flat tire and the individual misses the flight? Applying the definition of
externalization the fault for missing the flight would lie with the decision to use
the taxi service (with insufficient contingency) and not with the taxi service
provider.

The allocation of responsibility with utility calls is not necessarily so explicit.
Users and allowed/intended usage is not as well assigned if at all as they are
in the service based model.

1 Business Information/Data Access 1 for a delegated service there is an
implicit assumption that all information/data that needs to be agreed between
the parties to fulfill the service exchange is contained in the messages
underlying the exchange. Conversely with process/utility calls there can be
assumptions made that there is some shared/global database with common
data definitions available to both involved parties in order to support the
interaction.

The concept that each Service Domain is responsible for its own autonomous
internal 6databasedé6 and only needs to agr
exposed through service operation exchanges is another key facet of

encapsulation.

1 Functional Scope i the Service Domain designs have well defined
procedures to specify the functions that are performed directly by the Service
Domain and those that are to be supported elsewhere and accessed through
delegated service calls (externalized). The discrete non-overlapping
properties of the Service Domains provides a comprehensive and robust
framework for defining the required internal/contained and external
functionality. As noted the internal functionality needs to support the full life-
cycle of the control record. Any function, information and action that does not
have some aspect of the control record as its subject should be externalized.

In conventional process oriented design, the definition of utilities and other

shared resource access is determined primarily by implementation

considerations and feasibility i there is no high-level design partitioning

discipline that enforces the correct scope of any particular functional 6 modul e 6

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 15 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

2.2 Business to Technical Architecture i Mapping Service Domains

The BIAN SOA defines discrete business capability partitions as Service Domains.
The Service Domains are usually considered to operate as service centers i
operational capabilities that provide (and consume) business services from other
operational capabilities.

At the business architecture level the Service Domains can be used as the elemental
blocks for building different views of the business enterprise that are then used for
different types of planning and analyses. This use of Service Domains is addressed
in Sections 3 & 4 of this guide. This section looks at relating the Service Domains to
the underlying systems architecture model views that can be used to help design the
supporting business applications.

Business Capability Partition Vs Business Capability

A BIAN Service Domain is most accurately referred to as a business capability

partition or business capability building block. There is a subtle distinction between

the capability partition represented by a Service Domain and an aspect of a business

that i s conventionally referred to as a Obus
represents a discrete and generic business function or the capacity to perform some

action such as maintain reference details about a customer relationship or operate a

network.

A formal definition of a Obusiness capabilit
the business wishes to be able to do with assignable accountability and for which

some associated value and/or motivation can be ascribed. The business capability

combines the capacity to perform within specific organizational business context.

The function performed by a Service Domain may be leveraged/reused to support
different business capabilities with different associated business contexts and
associated values and/or purposes. For example BIAN has defined a Service
Domain that tracks/determines a bank's credit view for a customer (Customer Credit
Rating). Consider when this is involved in two different business capabilities:

1. (The capability to) Match products to customers
2. (The capability to) Negotiate product pricing with customers

The business capabilities would both likely reference Customer Credit Rating. But the
value/impact of the bank having an inaccurate credit perspective of the customer
varies between the two. If say the credit perspective is overly generous the impact on
product matching could be to recommend the wrong product, leading to a missed
sale or the sale of an inappropriate product. The impact on the pricing business
capability could be to offer too generous terms - a different value measurement.

Having the business capability view allows this context-based distinction to be

maintained. BIAN is currently developing a business capability model to augment the
current Service Landscape that will be made available in a later release.

Page 16 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

The Service Domains define partitions of the application logic and information/data

that need to be reflected i ns.Thawaytheol uti onods
Service Domains map to a technical architecture will vary for different technical

environmentsbr oadl y r ef |l ect i saphistcatiorfiretneesernice 61 evel s
enablement. The mapping in three different technical environments is addressed in

the next subsection. Before considering this mapping some more general statements

are needed as to how the logical partitions defined by Service Domains line up with

the business applications/systems in general. The terms used and descriptions of the

different mapping arrangements is described in more detail in the How To Guide i

Design Principles & Techniques. Those descriptions have been summarized here.

A stand-alone business application will have functionality that is typically represented
by a collection of several Service Domains. It is also possible for Service Domains
that combine many different tasks (such as product design or financial modeling) that
their implementation could include multiple (small or highly specialized) business
applications. Sometimes a Service Domain will map neatly to a single business
application. The most common situation however is where a business application has
functional scope covering multiple Service Domains.

The diagram below captures these different Service Domain to business application
mapping arrangements. It is used to explain the service operation support
considerations when the mapping is not a convenient one to one.

1 Many To One i when multiple business applications support the scope of a
single Service Domain the issue is the support for service operations that rely
on information or functionality that spans the business applications i where is
the necessary consolidation of activity performed.

1 Oneto Many i when a single business application covers the role of multiple
Service Domains the issue is whether all of the service operations of the
constituent Service Domains can be accessed externally (functionality can
often be embedded/integrated in a way that compromises its ability to act as a
discrete service center).

These service support issues are highlighted in the next Figure:

Applications Application Application BrokenUp -6 One 2
combine as elements matched (Breaking up monolithic host systems can
6Many 2 One®One 2 Ormgdeunsupportable service operations)

& =

)

?

=
pud
=5

Figure 3: Mapping Business Applications to Service Domains

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 17 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

In all of the mapping options described the service boundary of the Service Domain
and the businessa pp |l i c at g o erdeaning a businkss application is fully
contained within the scope of a Service Domain or a Service Domain is fully
contained within the boundary of a business application. The case when they are not
aligned is when the same service operations for a Service Domain somehow straddle
two or more business applications. In this case there will need to be
duplicated/redundant logic in more than one business application and the
discrete/non-overlapping principle behind the BIAN service based design will have
been compromised.

Business Architecture Vs Systems Architecture views of a Service Domain

The mapping arrangements described so far assume that the business application

performs a discrete business role (and can therefore be mapped uniquely to one or
more Service Domains). When considering the scope/mapping of application logic

there are two situations where the relationship between the logic supported by the

software components and the discrete business capabilities of the enterprise is not
directly and uniquely resolvable. This is the case in two main situations:

1. The application module is a Outilityd fun
contexts. Each instance of use is completely independent/unaware of other
i nstances. For ef gomphgx bligorittans éolld be coded gnd o
reused in many different applications supporting many different Service
Domains.

2. The application module provides a 6common
to support the needs of different business functions. An example would be in
the area of product fulfilment. There could be a collection of products such as
different types of loan that are captured as discrete business capabilities at the
business architecture level (and so would have different Service Domains).
But in operation they have very similar behaviors such that an application
solution built for one could be reconfigured and redeployed to support the
others. As with the utility function, each application deployment is functionally
independent/unaware of other deployment instances.

This mapping of utility and common solution application modules to Service Domains
is shown schematically in the next figure:

Page 18 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

For the simple case when an
application module maps to a
single Service Domain

SW Utility Library

B
—
-
e
]
v

Common Solution

Figure 4: Aligning utility and common solution application modules to service domains

The use of shared utility and common solution application modules is an important
aspect of effective software development and deployment. The use of these kinds of
application module can be properly represented at the system architecture level. It is
however not an aspect of the business architecture representation because the
business architecture level intentionally shows only discrete business capabilities.
These business capabilities may be supported by any appropriate combination of
application modules including unigue logic, re-used utility elements or employing a
configured instance of a common solution.

The tracing of utility solution elements and the possible scope of common/shared
solutions can be overlain on the business architecture representation. Where there is
a common pattern to this the mapping can be a useful guide for application
development. The Figure below shows how utility and shared solution options might
be related to a BIAN business architecture model.

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 19 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

Service Landscape V4.0

IT Standards Guidelins

SERVICE DOMAI®evelopment Environment

Systems

ora e o e
Standard Fee & Pricing Module
Financial Algorithms e

Data Archiving & Version Control
Analysis & Reporting Tool Set

Utility capabilities - -4 Common
can be deployed = = solutions can
across the ars==R= support many
landscape A — Service Domains

Figure 5: Service Landscape with shared and common solution overlain

Vendor Agnostic Application Model

BIAN has recently established a Working Group to explore the topic of mapping BIAN
designs to more detail application architectures in more detail. The goal of this
Working Group is to define and develop
view of the BIAN Service Landscape.

In addition to the broad alignment to the BIAN Service Domains outlined above this
group will consider how application logic may need to be partitioned to deal with
performance and security considerations. It will also consider how to represent
application logic that is not reflected in the BIAN model such as operating systems,
operational/functional utilities and platform capabilities.

The results of this Working Group will be included in later releases of this guide.
Service Domains can be mapped to Micro-services

Micro-service architecture has a lot in common with the core design principles
employed by BIAN. The Gartner definition of a Micro-service underscores this:

i A mBecvicenis a tightly scoped, strongly encapsulated, loosely coupled,
[

(@)

ndependently deployable and independent|

1 Gartner

Page 20 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

Micro-services can be defined at varying levels of detail. Terms 6 n a n o
are afteniusee td describe finer and coarser grained components

Omacr o

respectively. At one level the boundary of a Micro-service can be mapped directly to
the role of a Service Domain. The functional scope and the offered and consumed
Service Domain service operations define the Micro-service boundary.

Because a Service Domain performs a single discrete function and in particular

because it handles all instances of its specified business role from start to finish the
Service Domain has very strong function and data partitioning. Furthermore when a
Service Domain is implemented following proper service oriented design the service
behaviors can strictly enforce encapsulation.

The BIAN partitioning approach defines business components that specifically
conform to the goals of micro-service design. The summary table below outlines how
BIAN Service Domains and Micro-services can be compared:

Level

The hierarchy used to
build up solutions from
elementary
components

Services

Defines busines capability
partitions as discrete and bounded
(static) functionality

Application Integration

Defines the exchange of information and
actions to support (dynamic) business
behaviors

Elemental Component

Micro

-E- <E> service
The BIAN Service Domain provides a
candidate conceptual/logical design for a
Microservice. (Note: There may be multiple
physical interpretations of the Microservice
design in physical implementation)

A BIAN service exchange between two Service
Domains is an elemental interaction defined in
terms of context, purpose & information payload.
(Note: This is a conceptual/logical specification that can
be applied to defining and implementing an API)

AA microser
tightly scoped, strongly
encapsulated, loosely
coupled, independently
deployable and
independently scalable
application
i Gartner

Bundlesi initial thinking is
that bundles need to be
support at two levels:

1. Business Applications
2. Organizational Entities

Service domain 6clus
using BIAN wireframes, business
scenarios and more detailed Service
Domain & service operation
specializations

AAPI Solution Setso ca
6el emental 6 exchanges
define internal and external exchanges within and
between business applications within an
enterprise. Also to provide external access to that
enterprise (fAOpen

col |l ec
requi

combine
as may be

APl sd)

2.3 Service Domain Clusters

Figure 6: BIAN Service Domains related to micro-services

A Service Domain Cluster describes a grouping of related Service Domains. A

0 C| u soticebe Gsed to define a grouping that correspond to an organizational

0 s e g me nefinéd bg BOGAF such as a business unit, profit center, division or
enterprise. It can also be used to define a grouping that maps to the functional scope
of a business application or production system. The second type of grouping is
considered in more detail here.

The mapping options just described relates BIAN Service Domains to discrete
conceptual application partitions recognizing that there is not always a simple one-to
one association of the functionality. Service Domain business application clustering
takes this mapping one step further by taking into account considerations when the
logical/conceptual design has to be translated into a physical implementation design.

BIAN

© 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany

Page 21 of 85

sapdr Vi

cebobd



BIAN How-to Guide Applying the BIAN Standard V6.0

The BIAN Service Domains each represent a discrete, non-overlapping business
capability. In theory (and in some technical environments) each Service Domain
could be implemented as a stand-alone application and all business activity could be
supported by service collaborations between these distinct applications. In practice
the significant majority of business applications combine the capabilities of several
Service Domains as an integrated business solution. The reasons for integrating
capabilities together include performance, operational coherence and integration
considerations.

The various technical reasons for combining capabilities into an integrated
application are not addressed in this document. However, for a business application

cluster of Service Domainsi t i s necessary to define O0rol es
individual Service Domains relate to the broader application portfolio. The Service
Domains tend to play one of three rolesinthec ont ext of the overal/l €

systems portfolio as defined below:
Service Domain roles within a business application cluster are:

1 Core i The Service Domain exists only in the business application
represented by the cluster. Any and all reference to this Service Domain
must be supported by the external service boundary of the cluster. (As
must all of its delegated service operation dependencies). The Service
Domain Current Account Mortgage Fulfillment would be a core Service
Domain in the Current Account Mortgage Processing Application cluster...

1 Proxy - Represents a capability that is likely to be repeated in other
clusters and is included in the cluster to provide a local 'view'. In such a
case it could be the master version meaning all other instances need to
reference this instance for their needs, or it could be a slave, meaning it
needs to synchronize with the master instance elsewhere through suitable
'‘background'’ services. SD Party Data Management could be a slave proxy
service domain in the Current Account Mortgage Processing Application
cluster.

f Utility - A proxy Service Domain role, the cluster contains a non-unique
instance. But in the case the local instance operates in a fully standalone
manner - it does not need to synchronize or even be aware of other similar
SD instances elsewhere. Position Keeping (the transaction journal) is a
utility instance in the Current Account Mortgage Processing Application
cluster

When Service Domains are grouped into a cluster the external boundary of the
cluster can be defined by referencing the available service operation connections
between any of the Service Domains within the cluster and the surrounding Service
Domains with which they interact. For Proxy Service Domains additional external
connections are needed to ensure their synchronization with other copies of the
Service Domain maintained elsewhere.

Page 22 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

An example of a business application cluster is shown below (note only a sample of
service operation connections and surrounding/referenced Service Domains is
included for simplicity):

Clusttersshowip g QereliUitiliB/ProRky Roles

ey: Customer Contract Product Support Facilities
Core = Service Domain wholly
contained within cluster

[senice) Proxy=Local instance
(2%Main}  synchronised with master

A

Customer
Interaction

Utility = Local instance, no
Domain} need to synchronise

F’a External = Firstorder service
(29815} operation connections

Peripheral = Second order
Domain}  gependencies i for reference

Figure 7: Core banking Business Application Cluster

2.4 Mapping Implementation Level Functionality to a Service
Domain

The BIAN Service Landscape provides high-level descriptions of the BIAN Service
Domains and their service operation exchanges. Beyond the formal content of the
standard, the Business Scenarios also provide examples of how the BIAN Service
Domains may collaborate in different situations and in time BIAN develop and
provide other example views to assist with the adoption of the standard.

The content outlines the mainstream business operational features and exchanges at
a high level. The intent is to define clear functional partitions/boundaries in a way that
is implementation independent and unambiguous. The descriptions should be
interpretable into any prevailing technical environment and they should be sufficiently
detailed for the capability partitions to be consistently interpreted between different
deployments.

The Service Domain boundaries can then be used to align and arrange application
logic into discrete (non-overlapping) functional partitions with clear interfacing
requirements that are well suited to service enablement in a SOA. The high level
semantic BIAN definitions need to be extended to provide the necessary software
implementation level detail.

In the latest release cycle BIAN has added an additional level of detail to the Service
Domain and service operation specifications. It has also started to define its own
business object model (BOM) to specify the service operation content. The BIAN
BOM is informed by the industry standard ISO 20022 model.

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 23 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

This additional level of detail has been based on breaking down the main behavior of

a Service Domain that is defined byits o6f uncti onal patterndé into
called 6behavior qualifier typesd. The behayv
used to add detail to the internal working, the business information governed and the

purpose and content of the service operations the Service Domain offers and

consumes.

The BIAN specification is more fully described in the How To Guide 7 Design
Concepts and Techniques. In this section three main ways the BIAN specification
content can be extended are described in more general terms:

1 Service Domain functionality i BIAN does not define the internal functioning
of a Service Domain in any great detail but the functional scope can be
inferred from the business role/purpose, control record and service boundary.
This outline functional description can be extended using functional and non-
functional checklists

1 Service Operation 1 the BIAN service operations provide a semantic
description of the exchange dependency between two collaborating Service
Domains. This definition can be extended in two key ways i 1) the information
content can be defined in more detail by mapping to underlying message
exchanges; and 2) the protocol or orchestration of the interaction can be
defined in terms of the structure/choreography of the dialogue.

1 Semantic APIs i the BIAN Service Domains and service operations can be
used as a high level for defining standard application programming interfaces
(APIs). A specific BIAN How To Guide is available on this subject. It is
summarized here for reference purposes

A fourth way the Service Domain specification needs to be extended is the definition

of the business information (and associated data representation) governed and

referenced by the Service Domain and its service operations. BIAN is developing its

own business object model (BOM) that is related back to the industry standard

1ISO20022 model as noted above. As extended definitions of the Service Domains

are created as part of BI AN6s Semantic API [
of the Service Domains and their service operations is being enhanced.

Possible Service Domain functional specializations

When interpreting the high level BIAN designs there will often be a need to add or
make amendments to handle site-specific variations before additional detail is
mapped to the structures. These variations may be required to deal with
considerations such as local geo-political constraints, aligning with legacy systems
behaviors, supporting unique differentiating business practices and/or technical
environment implementation features. Whatever the reason for these specializations,
as long as the core role and purpose of the individual Service Domains remains
intact, the anticipated benefits of the BIAN SOA standard will be realized.

The key mechanism that can be used to ensure the core role/purpose is retained as
the Service Domain is specialised by adding implementation level specification detail
(and optionally local specializations) to the Service Domain and its service operation
specifications is the control record. As mentioned in the discussionof 6 e xt er nal i za't

Page 24 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

earlier in this guide, all service operation fulfillment, internal functional features and
associated business information use needs to be relatable directly to the control
record.

In the case of service operations and the linked messages underlying the requested
action and the information content needs to pertain to the definition of a control
record instance and if appropriate initiate some action that relates to its life cycle
behavior. Any extensions to the business information definitions and associated data
structures should also relate to the structure and content of the control record without
changing its basic scope or definition.

2.4.1 Extending the functional definition of the Service Domain

The BIAN definition of a Service Domain considers the internal functionality to be as
a 0 bl aicBlANWaes it attempt to specify any internal working patterns or
architectural structures. BIAN merely clarifies at a high level what business
functionality it should contain in order to fulfill its business purpose and what
business functionality it may need to access to through delegated service operation
calls to other Service Domains.

The main reason BIAN does not expand on the Service Domain functionality as part
of the canonical standardi s t h astfocuB is # Nefp improve interoperability
between business capabilities and not the effectiveness of those capabilities
themselves. As a result the standard only seeks to define formally the service
exchanges that connect the business capabilities. For this it is only necessary to
outline the purpose/role of a capability partition in order to be able to explain/match
its offered and consumed services.

Though a limited definition of the Service Domain functionality is sufficient to specify
its service operation use, it has been found that more detailed functional descriptions
are very useful to implementation teams using the standard. The improved
descriptions are needed to ensure that the teams correctly interpret the Service
Domain functional partitions. But as the internal workings of the Service Domain can
change and evolve, any more detailed functional descriptions are not canonical.
Instead they only provide some prevailing examples as a guide.

The limited functionality description provided for the BIAN Service Domain can be
easily expanded upon using the simple mechanismofa 0 ¢ h eThé&dhecldidt 6
provides a simple structured framework to list the prevailing functional and non-
functional properties that might be expected to be in place for a Service Domain (or
more precisely the business applications supporting the activity scoped out by the
Service Domain). The checklist includes the main prevailing features and can
optionally include sub-structures to list more specializations features aligned to
requirements such as:

1 geopolitical requirements i specific traditions and laws/regulations,

1 advanced levels of sophistication T advanced practices yet to become
standard

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 25 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

1 scale/segment i different properties that might apply to types of financial
institution or specifically to large enterprises

An example of a basic feature checklist table is shown in Section 2.5 of this guide.

BIAN does not currently maintain feature tables for the Service Domains. Like
Business Scenarios the feature tables are not canonical and only provide example
content. Furthermore the functional feature lists can be expected to change as new
practices emerge. This guide only describes the structure and use of feature tables
as a tool. It is anticipated that banks and solution providers will develop and maintain
their own feature tables or equivalent as might be necessary. BIAN may consolidate
and make available example feature tables for Service Domains if this is found to be
useful in the future.

When developing the feature lists for a Service Domain the same externalization
tests already described for specialization should be applied to the content.
Essentially all listed functionality should be directly relatable to instances of the
Service Domain control record and its particular life-cycle behaviors.

When considering the fit of a functional feature to a Service Domain it can help to
consider the Service Domain in the context of one or more Business Scenarios. It
can be easier to confirm the decision to externalize a function (that does not relate to
the control record of the considered Service Domain) if the correct location for the
functional feature can be assigned to some other Service Domain.

With the addition of behavior qualifier types to the specification of a Service Domain
there may be corresponding refinements that can be made to the structure of the
feature checklist table to reflect the different behavior qualifiers for a Service Domain.
This option may be explored in later versions of this guide.

2.4.2 Mapping service operations to messages

BIAN service operations describe a high-level dependency between two Service
Domains. They list the exchanged business information and may refer to
services/actions that are requested. The BIAN service operation does not define the
protocol or choreography of the interaction as this is typically implementation
dependent.

In an earlier release BIAN defined a comprehensive checklist of the types of

information that might be maintained by a Service Domain and that could be

referenced in the payload of called service operations. It also used filtering based on

t he Service Domai n 0 sthefactionderm obits setvicempetatiossr N a n d
to define candidate service operation content. In the latest release this checklist-

based approach has been replaced with specific semantic information content being

defined for individual Service Domains and their service operations as an aspect of

the Semantic API initiative.

The different approaches for defining the service operation content and the structure
of the information in a BIAN service operation definition is described in more detail in

Page 26 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

the next section. This section describes the steps of a procedure that maps service
operations to underlying machine level messages where they are available.

As noted earlier the service operation defines the information exchanged. It does not
define the protocol or choreography of the exchange as this is implementation
specific. For example a service operation exchange could be realized by a simple
two-way 6 h a n d sdf iafdereaion or could result in a complex iterative exchange of
underlying messages. In this context a message defines the data content exchanged
in appropriate detail.

A service exchange may involve some combination of:

1 The movement or assignment of some facility or resource

1 A free-form person to person dialogue/negotiation

T 6 St r u cabhdwmskudtdred information exchange person to machine and
machine to machine

As Bl ANO0s focus is on improving application
the service operation definition is on the specific content related to the exchange of

structured and unstructured information. Given the ever increasing ability of (Al)

technology to infer structure from different information sources the boundary between

structured and unstructured is in flux .

The t eessagedbefars to standard data structures defined to support specific
application to application exchanges. A message may include a combination of
individual data items, structured data records and unstructured data. Standard
messages have been published by a number of standards bodies. Of particular
relevance to BIAN is the ISO 20022 financial services message specification.
Standard messages are key for several aspects of banking (payment in particular).
Though published industry standard message specifications are only available for a
small subset of the business activities covered by the BIAN Service Landscape at
this time.

The precise structure of the BIAN service operation, in terms of the different fields,
naming conventions, standard content and content explanations are more completely
documented in the How-to Guide i Developing Content. These finer details are not
so important here where a general process for matching up the service operation
with the underlying standard message is outlined.

BIAN has undertaken a number of initiatives over recent years to explore repeatable
ways to map service operations to messages. A general approach is described
below. It has been derived in part from research initiatives performed by students at
Carnegie Melon University in collaboration with BIAN and PNC Bank. The final
reports for these studies are available at BIAN.org.

The mapping approach uses Service Domain design elements and their service
operations. These are explained in the How-to Guide i Design Principles &
Techniques and summarized here for ease of reference. The key BIAN design
elements/considerations include:

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 27 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

1 ServiceDomainéf unct i on d leverg BRIAN Serviae ®omain has a
standard operational behavior (its functional pattern). It performs this function
on instances of a selected type of asset. It is responsible for fulfilling its
function for the complete life-cycle (from start to finish) for each instance.

For example the Service Domain droduct Designéhas the functional pattern

ODESI GNO en tlypeadpr,hduett{ bervecmbdproduc
referstothecapacity to support some product/ se
intellectual property of its specification).

The full life-cycle for the instance of a product design spans the initial
identification/registration of the design specification, through all
specification/update cycles and usage scenarios through to the final
termination/archiving of the design.

1 functional pattern i BIAN has identified a number (18) of generic commercial
behaviors that are applied to different asset types in the execution of business.
For example for an asset such as an ATM network there are several
applicable functional patterns that represent the things done to maintain and
leverage this resource for commercial advantage. These include
managing/configuring, operating, maintaining and analyzing the performance
of the ATM network. As noted each Service Domainés
characterized by one functional pattern

1 assettype 1 BIAN has used a simple hierarchical decomposition technique in
order to identify the full range of tangible and intangible assets that may be
found in any Bank. BIAN has also refined techniques to determine the correct
level of granularity to perform this type decomposition in order to identify
Service Domains that are elemental in their role. This technique is fully defined
in the How To Guide i Design Principles & Techniques. As already noted
each Servi ce Doistheicombisation ef itsfundtianal pattern
appliedtothefulllifecycle6 pr ocessi ngo ospeciicassdtigpec es of

1 generic artifact & control record 7 As functional patterns describe a
behavior they typically take the verb form. The generic artifact for a functional
pattern simply describes some form of tangible record or document that can
be associated with the execution of the functional pattern. For example the
functional pattern Oagree termso6 that des
maintaining governing terms has the associated generic artifact of an
Oagreement 0.

A Service Domain applies one pattern of behavior (functional pattern) to one

asset type. l'ts control record combines t
with the asset type. The control record can be thought of as a mechanism

used to track/manage the execution of one occurrence of the Service Domain

performing its business role for a complete life-cycle. For example the Service

Domain Product Design the functional pattern is design and its generic artifact

i's Ospeci faiscsaetti otnybp.e Tihse 6 pr oduct/ servicebo
deliver a product or service) resulting in a control record that is

Page 28 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N



BIAN How-to Guide Applying the BIAN Standard V6.0

Oproduct/ service specificationo.

1 action terms i the primary purpose for each service operation call is reflected
in its action term. BIAN has identified a standard set of action terms to select
from and each service operation uses one of these action terms. In general
each action term defines the kind of operation that the service operation
results in on one or more control record instances, for example activating,
updating, requesting or retrieving (reporting) on that instance.

1 service operations T a structured framework/template is used to capture the
properties, naming and payload/content of a service operation.

The steps in the general approach reference these design features in order to match
messages to service operations. The general steps are described as applied to an
individual service operation:

1. Step 171 Asset Typeto objecti theserviceoper ati onds host Serv
Domainds control record includes the asse
type can be mapped to the object or data type that is the subject of messages
from the target message set. For example the asset type could be a customer
relationship and the associated object is the customer object. The selected
messages will contain customer related data

2. Step 27 Functional Pattern filtering i the BIAN functional pattern defines a
constrained used of the asset type. This can be used to narrow the scope of
the data related to the mapped object and this in turn can be used to
filter/eliminate the mapped messages. Continuing with the customer
relationship/customer object match, if the functional pattern is AGREE
TERMS, the customer related data can be limited to that directly associated
with the details that make up a customer agreement and any message not
containing this type of data can be eliminated from further consideration

3. Step 37 Action Term alignment i the action term provides a fairly precise
definition of the purpose for the service operation call (the intended action to
be performed). Many messages are similarly associated with some kind of
intended use/purpose T mapping the action term to this when available can be
used to further filter/eliminate candidate messages

4. Step 4 Service Operation payload i the final step uses the semantic
description of the business information content of the input and output
parameters of the service operation. The content is mapped against the
information payload of any candidate messages. This is done to confirm that
the message contains all key information and may also can highlight
redundant/excessive data content in the message for the intended purpose of
the service operation. In the latter case a design decision is required as to
whether the excessive content eliminate the message from the mapping

The selection and filtering of the messages described above does not take into
account any message exchange Odimtheserwiaggr aphyo

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 29 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

operation exchange. The BIAN service operation simply defines the main information
exchange dependency.

2.4.3 Semantic APIs

Semantic application programming interface (API) refers to using the BIAN Service

Domains and their service -opwm@atfioamewark afcd

defining standard aspects of an application to application interface. The latest release
of the Service Landscape includes a major update and revision of the BIAN approach
to APl 6s based on extensive work done
and an outline of how the BIAN standard can be used is covered later in this section
of the guide. A complete description of the BIAN API initiative can be found in the
BIAN Semantic APl How To Guide that is published with the latest Service
Landscape release.

All BIAN How to Guides are pitched for business and application architects. An API
practitioners guide intended for software engineers is planned for publication in the
near future

2.5 Applying BIAN in different technical architectures

The BIAN model defines the capability building blocks as discrete functional
partitions that are suited to service enablement. Though it can be highly beneficial to
relate the high level BIAN Service Domains to a service oriented systems
architecture (SOA) this is not mandatory. Here we describe three dypesdof target
technical architecture to describe the
architecture:

1. Type 1- Conventional (legacy/core) system rationalization T in this
example the BIAN Service Doman designs are used to assess an
existing application portfolio. The Service Domain partitions are used to
identify duplication and fragmentation of the business logic and
information between the business applications

2. Type 2 - Host renewal/ESB integration and application/system
assembly 1 building forward from existing system rationalization and
synchronization, technologies such as an enterprise service bus (ESB)
can be used to develop shared service capabilities and reduce
redundancy across the application portfolio

3. Type 3 -Loose coupled distributed/Cloud systems i the most
advanced use of technology considered is that of the highly distributed
internet and cloud environments, where solutions are loose coupled
and fully service enabled. This approach also fits with the emerging
micro-service architectures

The BIAN Service Domains and their service operations collectively represent a

complete, organized and non-overlapping description of all of the functional building
blocks needed to assemble any banking business application. The systems support

Page 30 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N

i nce

progr



BIAN How-to Guide Applying the BIAN Standard V6.0

for the Service Domain building blocks and their interactions can be realized in
different ways. If the business applications are aligned to the Service Domains
effectively then the operational flexibility and efficiencies of a SOA can be realized to
varying degrees depending on the technical environment.

Before describing how the BIAN designs are interpreted in different technical

environments, it is necessary to make a distinction between two aspects of business
operation that are captured in a Service Dom
be interpreted differently. To date, a Service Domain has been described as a

business capability partition that performs a business role and that is engaged

through its offered service operations and may subscribe to services from other

Service Domains as needed. This behavior is suitable to describe a service based
implementation but the same business capability may also be implemented in a less
flexible 6hard wiredd technical environment
interfaces rather than being realized being through some flexible service based

mechanism.

The Service Domain can be divided into two components i1 its functional core and a
060service enablingdé wrapper that handles the
as shown in the Figure:

Differentiating between the core

Service Domain functions and the ser

Mechanics
'R
(%)
o Q /
Full = s
i o3 i Service Operation
Lifecycle ;O 2o Core Func_tlons Orchestration
Instances - & Logic (Pattern)
(@]
0o
o) a Control Record
— 5¢< stae
2 CBD Core Data Management
\ Local State / « 8 -— o’ ;O

4

Figure 8: Service Domain broken into a functional core and service @vrapperé

This distinction is referenced in the descriptions of the different technical
implementation environments that follow.

2.5.1 Type 1 - Conventional (legacy/core) system rationalization

For legacy/core systems rationalization the Service Domains are used as a stable
framework that defines non-overlapping functional partitions that can then be used to
map the footprint of legacy/core applications to highlight different shortfalls. The
Feature Checklists described earlier and the recent addition of behavior qualifiers
can be used to provide a more detailed functional description of the Service Domains
for mapping the existing application portfolio. Only the functional core of the Service

B I A N © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany Page 31 of 85



BIAN How-to Guide Applying the BIAN Standard V6.0

Domain is used in the case, there is no assumption that any systems interfaces will
be service enabled. The Service Domains are simply used to define the assessment
framework.

As shown schematically to the left of the Figure below, most legacy business
applications cover the scope of multiple but differing collections of Service Domains
and so it is not meaningful to do a direct application to application comparison as two
applications will typically have different functional coverage. Because the Service
Domains do not overlap when the applications are mapped against them it is
possible to do a like-for-like mapping by considering the application coverage for
each Service Domain at a time and then consolidate the collection of assessments
for all Service Domains in scope for an application in order to reach a determination
as to its long term role.

This decision can become quite complicated as often a legacy system will not always
divide up/modularise neatly along Service Domain boundaries. So if an application is
found to be a good fit for some Service Domains and not for others it may not be
possible to retain just the desired elements. The determination has to be performed
on a case by case basis, but the Service Domain framework does at least give a
clear indication of where an application has strengths and weaknesses to feed into
that more objective selection assessment.

Duplication Gaps Misalignment

Vs

Without a framework, systems comparisons are
complicated by the different scope of applications

- = .. I I
Bounded Servic " | |
Domain r
Capabilities | f_" I 1
N l LN N} '
With the boundaries of the framework, the When all applications are mapped across the

FaaSaavySyada NB afA{S T2 NJ fokganikation shortfalls are exposed

Figure 9: Using BIAN Service Domain partitions for comparisons

The schematic mapping on the right shows the Service Domains as the background
grid and then overlays the functional footprint of the existing business applications.
Three different shortfalls are highlighted,;

71 Duplication i perhaps the most obvious is where two or more business
applications perform the role of the same Service Domain. As noted below this
may or may not be an issue, but at this stage it highlights potential redundancy

1 Gaps 1 the Service Domain feature checklist may include functional features
that are not currently fully supported and these will show up as gaps in the

Page 32 of 85 © 2018 BIAN e.V. | P.O. Box 16 02 55 | 60065 Frankfurt am Main | Germany B I A N


































































































































































