il

=BIAN

Banking Industry
Architecture Network

Banking Industry
Architecture Network

BIAN
How-to Guide

Design Principles & Techniques

BIAN How-to Guide Design Principles & Techniques V7.0

Organization

Authors

Role Name

BIAN Architect Guy Rackham
Status

Status Date Actor
DRAFT October 2018

Version

No Comment / Reference
7.0 First edited version

Company
BIAN

Comment / Reference

Initial draft

Date
October 2018

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 3 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Copyright
© Copyright 2018 by BIAN Association. All rights reserved.

THIS DOCUMENT IS PROVIDED "AS IS," AND THE ASSOCIATION AND ITS MEMBERS, MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS DOCUMENT ARE SUITABLE FOR
ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

NEITHER THE ASSOCIATION NOR ITS MEMBERS WILL BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR
RELATING TO ANY USE OR DISTRIBUTION OF THIS DOCUMENT UNLESS SUCH DAMAGES ARE
CAUSED BY WILFUL MISCONDUCT OR GROSS NEGLIGENCE.

THE FOREGOING DISCLAIMER AND LIMITATION ON LIABILITY DO NOT APPLY TO, INVALIDATE,
OR LIMIT REPRESENTATIONS AND WARRANTIES MADE BY THE MEMBERS TO THE
ASSOCIATION AND OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE ASSOCIATION.

Page 4 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I AN

BIAN How-to Guide Design Principles & Techniques V7.0

Table of content

1 BIAN How-to Guide - Design Principles & Techniques...................... 8
00 [0 To [§ ox 1 o o H PP T PP TPPRTTRPRI 8
1.2 Explaining why BIAN adopted a functional capacity based model..................ccoevvnnnnnn. 9
1.3 Picking the right model view for a technical solution................oooeiii 12

2 Business Functional Capacity Partitions — BIAN Service Domains..14

2.1 Comparing Functional Capacity and Process views using an example.................... 14
2.2 Techniques used to define a Service DOMaiNScccceeveeeiiiiieiiiieie e, 18
2.3 Al BIAN Service Domains Share a Common Operational Structure......................... 24

2.3.1 General Service DOmain Properties..........uuuuieiiieeeiiiieiiiiies e e e e e e e e e eeeanes 25

2.3.2 The Responsibilities of Well Defined Service Domain Could be Outsourced...28
2.4 Comparing ‘utility’ and ‘functional capacity’ approaches to re-use in SOA 28

2.5 BIAN Service Domains must be ‘Elemental’c.ooeieiiii e 29

3 Modeling Real World Behaviors — Service Operation Interactions...32

3.1 Modeling Service Domain BuSINESS EVENES...........ceiiiiiiiiiiiiiiciie et 36
3.2 Modeling First Order INtEraCtiONS...........ceeiiieiiiiiiiiee e e e et eeeeaaeees 38
3.3 Modeling BUSINESS SCENANIOS.......cetiiiiiiiiiiiiiiiiiiiiiiieiie ettt 39
3.4 Pre & POSt CONAILIONSuviiiiiiiiiiiiiiiee ittt e et e e e e e 42
3.5 WITETTAIMES ..ottt 43
3.6 The Semantic Definition of Service OpPerationS...........cccovvviiiiiieiiieeeeieeieee e 46
3.6.1 Specialized SErviCe OPEratiONSuuuuuuuuuummniniiiiiiiiiiiiiieaeeeeeeee e 52
4 Interpreting the BIAN Standard in Implementation........................... 54
4.1 Mapping BIAN’s Business Architecture to Systems Architectures...........ccccccovveee. 54
41.1 Extending the detail of the BIAN specificationcccccoeeeveiiiii, 56
4.1.2 Mapping BIAN Service Domains to Business Applications............ccccccceeeeeeeen. 58
4.1.3 Relating Business Information to Data in Service Oriented Design.................. 62
4.2 Clustering Service DOMAINScouviiiiiiiiiiiiiiiiiiiii ettt 66
4.3 Mapping BIAN to Other Industry Standards (e.g. IFX, 1SO20022)ccceeeeeeeeeennee 68
4.4 Other Mapping CONSIAEIAtIONSccvvviiiiiiiiiiiiiiiiiiiiiie ettt 69
4.5 Applying BIAN Designs in Technical Environmentsccccccoiiiiiiiiiiiiinieeeeeeeeee 69
4.6 Translating BIAN ‘down the Stack’ ... 70
4.6.1 Translating at the Application Level.............ooooiiiii e, 70
4.6.2 Translating at the Infrastructure LeVeloooviiiiiii i, 71
4.6.3 Translating SUMMAIYoouiiuiiiii e e e e e e e e e e e eeeeeannns 72

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 5 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4.7 Applying Service Domains in Different Technical Environmentsccccccvvvvveeeen. 72
4.7.1 Type 1 - Conventional (legacy/core) system rationalization......................uuunn.. 73

4.7.2 Type 2 — Host renewal/ESB integration and application/system assembly 75

4.7.3 Configuring an Enterprise Service Bus (ESB) ... 77
4.7.4 Type 3 - Loose coupled distributed/Cloud Systemscoovvviiiiieeeeeieeiiinnnnnn. 78
4.7.5 Using BIAN Service Domain partitions to define API's............ccoooeiiiiiii. 80
4.7.6 Combining Types 1-3 — Most banks have elements of all three....................... 82

4.8 Defining an Enterprise Blueprint for Business & Technical Analysiscc........ 83
4.8.1 Creating an Enterprise BIUEPIintcoiiii i 84
4.8.2 Analysis Supported by the Enterprise Blueprint............cccoeeeeeiie e 85
4.8.3 Linking Between Business & Technical ASsSessments..........cccceeeeeeeeeeveeevnnnnnnn. 86

SO0 o Tod U] o o 1SRRI 87

Page 6 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I AN

BIAN Ho

Table

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:

BIA

w-to Guide Design Principles & Techniques V7.0

of figures

The BIAN 'How-to Guide Design Principles & TeChniquUeS...............uuvveriivieineeninnnnns 8
Process model of a card billing CYCle..............uuiiiiiiiiiiii 15
Process model aligned to functional capacities - Service Domains........................ 16
Billing event as a network collaboration)..................cccueieiiiiiiiiiiiiis 16
Asset type decomposition - tOP IEVEIS.........uuiiiiiiiiiiiiiiiiiiiii e 19
Unique business context example building Vs business architecture..................... 20
Functional pattern tableooii i 21
(12T 01T (ol N 1] = Tod R 22
Asset decomposition EXCEl @XIractouvvuiiiiiiiiiiiieicic e 23
Behavior QUAlIfIErS TYPES....cuuuiiiii e e e e 23
Structure of a Service DOMAINuiiii i e e eeeaeanee 24
End to end states for the functional patterns..............cccccciiiiiiiiiiiiiiiies 25
Design properties and Service Domain schematic..............ccccccvviiiieiieeniiiiiiinnnn. 26
a Service Domain represents an organizational capabilityccccccvvvvviinnnnn. 27
Two types of SOA - process & functional capacity oriented...........cccooeevvvvviiinnnnnn. 29
Rescoping a BIAN Service DOMaiNcceiiiieeiiiiiiiici e 31
Example Business Events for a primary Service Domain............cccoeeeeeeeeiiiiinnnnnnn. 38
Example First Order INtEractionuueeuuuuuuiiiiiiiiiiiiiiiiiiiiinieeeeeeeeeeees 39
An example business scenario with guidelines ..o, 41
Service Domain's general Service CONNECIONS...........ccuuviieiiieeeiiiciieee e 44
Wireframe example - informal CONNECtiONScooovieiiiiiiiee e 45
Wireframe example - formal CONNECLIONS...........coooeeiieiei i 45
Action terms, descriptions and eXampleS.........ccooivviiiiiiiiie e 49
Action Terms mapped to Functional Patternsccccceeevieeiiiiiiiiicie e, 50
Information Profile @Xtract..........coooeeeeiiiiiiiieis e 51
BIAN - the link between business and technical architecturescccccuvveee. 55
Functional Pattern and Behavior Qualifier TYPES......ccceeeviiieiiiiiiiiiiie e, 57
Service Domain to Business Application one t0 ONe...........ccevvvvviiiiiiiiiiiiiiiiieiene, 59
Service Domain to Business Application one to manyccccccvvvvvviviiiiiiiieennnn. 59
Service Domain to Business Application - many to ONecccoevvviiiieieeenerennnns 60
Utility application MOdUIE rE-USEuuuuuiiiiiiiiiiiiiiiiiiii e 61
Configurable SOIUtiON re-USE...........ccoiiiiiiiiiiii 61
Example Cluster for a Retail Banking Applicationccccoevviiiiiiii e, 67
Mapping Service Domains down the stackcccccvvieeei i, 72
Service Domain split into two key COMPONENTScovvvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 73
Using Service Domain partitions to do COMPAariSONSccevveeviviniineeeeeeeeiiiiennnnn. 74
The stages of externalization ... 76
More detail of Loan externalizationcccooeeeiiiieiiiiiis e 76
ESB based application assembly ... 78
Cloud based deployment enviroNmMeNt...........ouuuiiiiiiiiii e 79
In the cloud communication can be semantiCceeevieeeiiiiiiiiiiie e, 80
Cloud based service acCesS CONLIOIccciviiiiiiiiie e e e e e e e aeaeees 82
Client-server BIAN GeSIgN .. .ooeiiieiiiiiiai et e e e e e e e e e eeeeeneees 83
Three stage process for defining a blueprint...........cooiiii i, 84
Using the enterprise blueprint for planning & analysisccccccvveiiiiiiineiinnnn. 86
BIAN designs help bridge between point and enterprise viewpoints 86

N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 7 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

1 BIAN How-to Guide - Design Principles & Techniques

1.1 Introduction

This is the first of three documents making up the BIAN ‘How-to Guide’ series. It
covers the BIAN design principles and techniques. The intended audience is
business and technical architects. It presents the theory and concepts behind the
BIAN standard. In particular it explains how the BIAN designs seek to be canonical.
The content is summarized in figure 1. Some of the topics covered here from a
mostly theoretical/conceptual perspective are revisited in the other documents of the
BIAN ‘How-to Guide’ from their respective viewpoints.

BIAN has defined a novel approach to
define canonical SOA standards

The Service Domain definitions are
tested by using them to model real
world business situations

BIAN defines discrete, elemental There is a clear path to applying

the BIAN specific designs in
practice

business functional capacity
partitions - BIAN Service Domains.

1-BIAN’s
functional capacity

3 - BIAN partitions
have to be defined

1 - Every Service
Domain has a

3 -All service
exchanges are

1 - BIAN specific
model can be

3-ABIAN
business blueprint

oriented approach at an elemental standard working defined in mapped to other supports many

differs from level to be pattern semantic terms architectural views analyses:

conventional canonical 3.1 Performance
3.2 Coverage

process models

3.3.Attribution

2 — The designs
can be related to
different technical

2 - All business
activity can be
represented using (N
service exchanges implementation

i environments
a _type of ‘a§s_et’ git:qv;?s service 2.1 Core/Host/Legacy
with a specific 2.2 ESB Enabled
‘pattern’ of use 2.3.Cloud/
Microservice

2 - ABIAN
functional capacity
partition combines

Figure 1: The BIAN 'How-to Guide Design Principles & Techniques

The BIAN business architecture adopts a functional capacity based view of business
activity. An explanation of what this means and the reasoning behind its adoption is
provided in the remainder of this first opening section. The BIAN design principles
and techniques are then set out in three additional sections:

Section 2: BIAN Functional Capacity Partitions — the Service Domain —
BIAN’s approach is based on breaking down all banking activity into a
collection of discrete business functional partitions called BIAN Service
Domains.

Section 3: Modeling Real World Behaviors — Service Operation
Interactions — The specification of BIAN Service Domains is tested and
refined by modeling business behaviors primarily using BIAN Business Events
and their associated Business Scenarios to identify service operation
dependencies between Service Domains. The service operations define the
Service Domain exchanges in semantic terms

BIAN

Page 8 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany

BIAN How-to Guide Design Principles & Techniques V7.0

Section 4: Mapping the BIAN Business Architecture to Systems
Architectures — The BIAN standard is a type of service oriented business
architecture (SOA). It needs to be mapped to different and more detailed
systems architecture views to support solution development. Furthermore the
way the BIAN model is interpreted varies for different target technical
environments. This section concludes with a brief description as to how the
BIAN specifications can be also used for business and technology planning
and analysis.

1.2 Explaining why BIAN adopted a functional capacity based
model

BIAN’s goal is to define standard service operations covering the working of banks
(other types of financial institution may be included in time). BIAN has adopted a
specific approach to modeling business behaviors In order to define service
operations that are ‘canonical’, or consistently interpretable in any bank. The
approach captures business activity by identifying generic operational ‘business
functional capacity partitions’ — the “BIAN Service Domains”. An operational business
functional capacity partition represents the ability perform some type of well-defined
business need such as the capacity to maintain a contractual agreement or the
capacity to execute a financial transaction.

A capacity-based model of business activity is fundamentally different from the more
widely used process oriented model. The capacity model captures the static or
enduring facilities/functions that collectively make up a bank. For example a typical
bank will have customer contact centers, bank branches, ATM networks, trading
floors, and intangible items such as relationships, knowledge and know-how. The
alternate process model view captures the dynamic or temporal sequence of linked
tasks that happen in response to some kind of trigger or event. For example a
process model can describe the steps a bank follows when it on-boards a new
customer or the steps it follows when it executes a payment transaction.

The difference between Functional Capacity (Static) and Process (Dynamic)
Model Views

The two types of model are not mutually exclusive. They are simply used to
represent different perspectives of a business and so highlight different aspects of
the same business activity. The static functional capacity model is good to highlight
the discrete working elements/resources/skills needed to respond to any likely event
but does not necessarily detail the precise sequence or thresholds involved in
invoking these different functional building blocks to react to any one particular
business event. Conversely the dynamic process views sets out the sequence of
dependent actions in a tightly linked series needed to address a specific business
event but may not detail the specific functional capacities/elements responsible for
completing each particular action. To properly model business activity both static
and dynamic perspectives are often needed.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 9 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

An analogy can be used to clarify the difference between a static/capacity model and
a dynamic/process model. Consider something more tangible than a commercial
enterprise — a city. A ‘static’ functional capacity model view of the city lists the types
of buildings and different infrastructure that makes up the town. These elements can
be lain out to create the town plan The ‘dynamic’ process model view in contrast
describes examples of individual journeys made through the town by its inhabitants
as they carry out their day-to-day activities.

Continuing with the city analogy the limited information needed to describe a journey
between two points is simply the directions to follow — turn left, straight on, turn right
etc. This description does not include the nature or purpose for visiting specific
buildings on the journey. This highlights a limitation of many process models as
already noted they do not necessarily formally define the responsible parties along
the way in any great detail.

The BIAN standard defines discrete business functional capacity partitions — its
Service Domains. These are similar in purpose to the buildings in the city plan, where
each Service Domain represents a specific type of building with a discrete purpose (a
school, police station, home, grocery, park, cinema etc...). BIAN Uses a number of
static model views containing Service Domains for different purposes (These are
described in more detail later):

e The BIAN Service Landscape — is a reference model containing one of each
identified Service Domain organized in groups to help with their identification
and selection

¢ A Model Bank View — is an enterprise blueprint assembled from a selection of
Service Domains, possibly including duplicates of Service Domains where this
is necessary to reflect the make-up of the particular organization. (For
example if the enterprise operates multiple contact centers in different
locations there will be copies of the associated Service Domains)

e A Wireframe — is a more narrow selection of Service Domains (with the
available service connections between them) needed to address a particular
area of business activity. For example all of the Service Domains directly and
indirectly involved in customer relationship development.

BIAN also uses a representation called the BIAN Business Scenario. This differs
from the previous views in that it aligns loosely with a dynamic process model. Like a
process model, the Business Scenario defines a linked sequence of interactions
between Service Domains in response to a business event. The Business Scenario
also clearly defines the specific Service Domains and service operation exchanges
responsible for each action involved in the sequence.

A Functional Capacity (Static) Model is Better Suited to Defining a Standard

The city analogy also helps explain one key reason BIAN has used the capacity-
based model view to define standard service operations. The capacity model of the
city (the town plan) is bounded or finite in terms of its scope. Depending on the
selected level of detail, the structural make-up and content of the town plan is quite
stable and enduring. It should be possible to draw an unambiguous town plan that

Page 10 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

everyone can look at and agree whether or not it accurately represents the current
layout of the city.

To define an unambiguous and comprehensive process model of the city would
require capturing every possible ‘day-in-the-life’ journey that any of its inhabitants
might wish to make. Clearly the number of process paths and possible variations
needed to exhaustively capture anything that may go on in that city is practically
unlimited. It would be just about impossible to document every possible one let alone
have everyone agree on the validity of them all.

Process models of a business are extremely useful to capture frequently recurring
behaviors that can then be streamlined and/or automated. This view would be used
to determine the optimal configuration for mass transit systems in a town. But
process models due to their very flexibility are not good for defining canonical
standards for anything but the most commodity and predictable type of behavior.

Defining Canonical Functional Capacity Partitions

To define its standard BIAN has used functional capacity modeling to break a bank
down into its constituent functional elements. BIAN has had to do this decomposition
in a specific way that meets a critical objective. In order to create a canonical industry
standard the constituent partitions that BIAN specifies must represent
common/generic building blocks that any bank can select from and assemble to
create their own particular ‘town plan’ equivalent of their specific enterprise. The
approach BIAN has developed to identify generic functional capacity building blocks
is described later in this guide.

As noted, the building blocks in the BIAN model are called BIAN Service Domains.
The BIAN Service Domains define behaviors at a business architecture level. These
fairly high-level definitions need to be related to more detailed systems architecture
views for implementation. Some approaches for doing this mapping/translation are
also outlined later in this guide.

Why Use Functional Capacities as the Building Blocks for the BIAN model

The justification for the BIAN approach described so far has explained why a static
model view is most appropriate for its purposes (as opposed to a dynamic model
view) and further that a functional capacity model meets this particular requirement.
But are there any other static model views that could have been used?

A static model captures the enduring elements that make up the subject. The model
also represents a finite or bounded dimension of the subject (that can be
decomposed into its constituent parts at increasing levels of detail). It is interesting to
briefly consider other static dimensions of a bank in order to confirm that the
functional capacity partitioned view is indeed the best for BIAN’s purposes.

e Organization/roles — this is clearly a finite/bounded dimension but it can be
volatile. It also seems that agreeing a comprehensive set of standard roles

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 11 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

and then also standardizing the service exchanges between them would be
extremely difficult and may not also relate easily to the supporting
applications/systems

e Locations — also clearly a finite/bounded dimension but clearly not a structure
that can be easily related to the supporting applications/systems in any
general way

e Finance/Capital Allocation — another well bounded dimension but as with
locations, difficult to relate to supporting applications/systems in a
standard/general manner.

From these examples it is hopefully clear that a functional capacity model is most
likely to provide a standard view that can be sensibly aligned with the supporting
applications and systems.

1.3 Picking the right model view for a technical solution

There are several different ways information technology can be leveraged to support
business activity. It is important to match the chosen model view to the way the
underlying technology solutions are intended to support the particular business
activity.

As mentioned, a process model view is most useful when the goal is to design and
build systems that automate/streamline repeating and well-defined activities. In very
general terms, a process oriented view of a bank models it as a factory with highly
structured production lines that can be automated. A common goal of the supporting
technology is to maximize straight through processing (STP) in order to increase
efficiency and consistency. Process models and the process-oriented systems they
are used to develop are often most appropriate for the high volume transaction
processing found at the core of most banks.

But there is a wide array of activities that also go on in a bank that surround this core
‘transaction factory’. This includes activities such as product/service ideation, new
business development, relationship management, customer servicing and risk
management. These activities are not always easily captured using process models
as they do not always follow a predictable and repeating execution path. They are
best modeled as collections of discrete specialist functions that collaborate as and
when required in a flexible, loosely connected network.

Different model views have emerged over time to better help design systems that
support this kind of business behavior. Of note is object-oriented analysis and design
(OOAD) and more recently service oriented architecture (SOA). Lately some SOA
concepts have been adapted/extended to support the definition of standard
application program interfaces (APIs). Also there are significant similarities between
the BIAN model view and micro-service architectures and some domain driven
design concepts.

Page 12 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

The BIAN model is a specific type of service-oriented architecture (SOA) applied at
the level of business architecture. Its service exchanges can also be aligned to APIs
at a semantic level. The interpretation of the BIAN designs into the underlying
systems designs is therefore best suited to service oriented systems design. The
BIAN designs can of course be interpreted for process oriented systems design but
many of the advantages of service-oriented design are compromised in so doing.
The mapping approach for both service and process oriented systems designs are
described later in this guide.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 13 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

2 Business Functional Capacity Partitions — BIAN Service
Domains

This section sets out in more detail the way that the generic BIAN Service Domains
are specified and how they can be interpreted in systems implementation. It is broken
into five sub-sections:

1. The difference between process and functional capcity views is clarified by
means of an example that uses example Service Domains.

2. The current technique for defining the discrete business role/scope of a
Service Domain is outlined.

3. Every Service Domain has a common structure

4. Comparing process and capacity based solution element re-use

5. BIAN Service Domains are ‘elemental’. A technique is provided that is
sometimes needed to adapt the ‘generic’ elemental Service Domain
specification in deployment.

2.1 Comparing Functional Capacity and Process views using an
example

As noted, the BIAN capacity model does not replace conventional process models.
Both model views simply offer different perspectives of the same business activity or
event. The process view of some event sets out the sequence of linked actions
needed to handle the event, similar to a chef following a recipe when baking a cake.
The functional capacity view of the same activity details the ingredients and kitchen
equipment needed for the chef to be able to bake that cake.

When the functional components that support the activity are added into the process
view they provide additional insights by formally identifying the ingredients/capacities
that are used/referenced throughout a process. If every process were completely
stand-alone this additional insight would have only limited value. But in a bank the
functional capacity accessed in one business process will be used in different
combinations in many other processes in the same way a chef can use kitchen
equipment and ingredients to prepare many different recipes and many different
meals.

An example showing how the same business event is represented using a process
and a functional capacity view helps to highlight the additional insights provided by
the capacity perspective. The business event is the processing of a month-end billing
statement for a credit card customer. First a simplified process decomposition of the
event is shown in the next figure:

Page 14 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Monthly card billing process: at month end a card holder’s outstanding balance is evaluated and a minimum payment and outstanding
amount calculated. A billing statement is printed off and sent to the registered billing address. A period later the payment s either received
in time or the accountis placed into past 30 day payment state and further use of the card restricted

e e oo G e

end due cards in customer J@pacti istory 2 minimum address & billing marketing send oul inbound paymen payments
card extract suspense account # (30 days) payment details invoice materials letters payment to account received

EETTII g ?PPPPPPPPPPJ

They can be assembled to create a stand- Choreographi/ implemented as a dependent procedural flow of
alone/monolithic billing application tightly coupled service couplets that ‘exist’ for the life of the

transaction itself

Figure 2: Process model of a card billing cycle

The process model view is typically used to break the required sequence of tasks
down in ever increasing detail until the point where steps are simple enough to be
coded (typically as input/process/output modules) and automated in an application.
(In the example the steps are not broken down to this extent to keep it simple.)

Next, the same business event and the low level process steps are matched to the
business functional capacity partitions (BIAN Service Domains) that would be
involved. Five discrete partitions are involved in this simple example:

1. Credit/Charge Card (Fulfillment) - responsible for orchestrating any activities
associated with the use of a credit card

2. Customer Agreement — responsible for maintaining the customer specific
terms and conditions (in this case the relevant terms are their cycle date and
any applicable fees and rates)

3. Position Keeping — responsible for tracking financial transactions in some

form of transaction journal account

Correspondence — responsible for messages sent to and from customers

Payment Order — responsible for moving funds from one account to another.

o s

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 15 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

As can be seen in the next figure the steps in the original process view can be
uniquely assigned to different business functional capacities.

\ Getaccaun(\ \Getmumg Print
dayduecard cardsin ¥ custo oss & bllhng
suspense §f accou un# Z (30 jay) f hls invoice

Billing
Application

Choreography
implemented as
an
asynchronous
series of loose
coupled service

' Post Checkor
payment payments
o account received

interactions
between
persistent
......... Service
N Fost .
payment Domains
to account,

The process is
remodeled

S day due cards in actvity history ini address& % biling % markefing inbound % paymentto % account ,
card extract @ suspense f#f account# (30 days) payme! details ic materials e payment account status received
Figure 3: Process model aligned to functional capacities - Service Domains

The sequence of actions orchestrated in the process flow has now been re-organized
as a number of service exchanges between the business functional capacities, as
shown by the red connectors on the right of the original swim-lane diagram. A better
way to draw the interactions between these business capacities or BIAN Service
Domains is shown in the figure below where the layout is more representative of a
network.

__

__

__

(e)
--oo

=— o

Figure 4: Billing event as a network collaboration)

Page 16 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B IA N

BIAN How-to Guide Design Principles & Techniques V7.0

The Service Domains can be implemented to act as service centers that support the
pattern of collaboration needed to process month-end billing. If properly designed
they can also be involved in the concurrent processing of any number of other
business events in different combinations with other Service Domains.

BIAN is working to identify the complete collection of all of the Service Domains
needed to support any activity that may be performed in any bank. These Service
Domains are captured in the BIAN Service Landscape. As described in the next
section, BIAN uses Service Domains in real world examples of business activity in
order to confirm that all of the required Service Domains have been identified and to
confirm their precise role and service specifications.

Business Capability Vs Business Functional Capacity Building Block

So far we have described a BIAN Service Domain using the rather unwieldy term
business functional capacity rather than the more obvious business capability term
that might be expected (and was used in earlier versions of this guide. There is
however an important if subtle distinction between the business functional capacity
partition represented by a Service Domain and an aspect of a business that is
conventionally referred to as a business capability.

A Service Domain represents a discrete and generic business function or more
precisely the capacity to perform some action such as maintain reference details
about a customer relationship or operate a network. A more formal and complete
definition of a ‘business capability’ describes something that the business wishes to
be able to do within a defined business context for which some associated value or
purpose can be defined.

Therefore in BIAN the business capability it defined to combine the capacity to
perform with a specific business context. The business function performed by a
Service Domain may be leveraged to support different business capabilities with
different business contexts and associated value and/or purpose.

An example will help clarify this distinction. BIAN has defined a Service Domain that
tracks/determines a bank's credit assessment for a customer (Customer Credit
Rating). This Service Domain may be involved in many different business
capabilities. Consider the two possible business capabilities:

e The capability to match products to customers
e The capability to negotiate product pricing with customers

Each of the above business capabilities can be modeled using a BIAN Business
Scenario. In both cases the scenario will include a reference to Customer Credit
Rating, but the value/impact of the bank having an accurate credit perspective of the
customer varies between the two capabilities.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 17 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

If the credit perspective is overly generous it may be the impact on product matching
would be to recommend the wrong product, leading to a missed sale or worse the
sale of an inappropriate product. The impact on the pricing business capability would
be to offer too generous terms, clearly a different business value measurement.

Having the business capability view allows this context-based distinction to be
maintained. BIAN is developing a business capability model to augment the current
Service Landscape. The higher levels of this model are included in the latest release.
With the capability view in order to avoid confusion the functioning of a Service
Domain is more accurately referred to as a ‘business functional capacity.
Alternatively it can be termed a ‘business capability building block’ (as defined by
TOGAF). The abbreviated term that will be used in the BIAN guides is a ‘capacity’ —
which is short for business functional capacity.

2.2 Techniques used to define a Service Domains

BIAN has defined and applied a repeatable (empirical) technique for isolating and
scoping out the business functional capacity represented by a BIAN Service Domain.
This technique is based on the supposition that to realize commercial value from
some type of asset some type of action needs to be performed upon it. This can be
either to improve or sustain the asset or to then to exploit or leverage it in some way.
For example you can possess the asset of a car but to gain value from it you need to
both maintain/fuel the car and then operate it, perhaps as part of a taxi service.

In the BIAN technique an asset type corresponds to some tangible or intangible thing
that the bank has ownership and/or influence over and has one or more inherent
uses or purposes that create commercial value. Some examples can help clarify:

e A building is a tangible asset that can be used to house office functions

e Product expertise is an intangible asset that can be used as the basis for
transacting business

e Market insights are intangible assets that can be used to identify business
opportunities

e An ATM network is a tangible asset that can be operated and used as an
access channel to deliver services to customers.

Simple tests for a well-defined asset are: that it can be purchased or acquired; owned
or influenced (to foster or exploit/leverage it); and it has some associated commercial
(possibly replacement) value.

All BIAN Service Domains follow this two-aspect definition of having an associated
asset/entity type and a type of action/function performed to an instance of that asset
type in order to create commercial value/benefit. For the asset/entity dimension BIAN
has used a simple hierarchical decomposition of the full range of assets/entities, both
tangible and intangible that may be found in a bank. The decomposition breaks the
asset/entity types down such that at each level of decomposition the collection of
identified asset/entity types is mutually exclusive (non-overlapping) and collectively
exhaustive (complete) or ‘MECE”. Note that the structure of the decomposition itself
(the different intermediate non-overlapping and collectively exhaustive categories) is

Page 18 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

not particularly important. The technique is used primarily to identify all of the
different asset types. Where they happen to be found in the decomposition structure
itself is not of any great significance.

The figure below shows the first few levels of the asset/entity decomposition currently
used. In the decomposition you can see resource type assets (e.g.
buildings/workforce) and production capacity (e.g. product delivery and call centers).
In the decomposition an asset can be the capacity to perform some function that
combines resources, The production capacity is an assembly of other asset types
(for example you need people, equipment and know-how) but the collection of
suitably configured resources to create the production capacity is defined as an
additional asset here. It can be seen that at the first and second level the range of
possible asset types has been divided into:

1. Production capacity made up of product/service fulfillment, distribution,
combining electronic and assisted channels and sales and marketing
functions

2. Centrally managed resources that includes the enterprise functions,
finance and buildings and equipment

3. Relationships split into the general workforce and the wide range of
external contacts

4. Intellectual property/knowledge that is split between knowing how to do
things and knowing about things.

Asset Types

Relationships Intellectual Property
e.g. employees & e.g. knowhow &
partners knowledge

Production Capacity Central Resources

e.g. fulfillment, distribution & sales e.g. H.O, fixed assets & capital

n n At =T 0 Enterprise
Product Delivery Capacity Distribution Capacity Res oErce
Financial Facility Product/Service Bank Facility I~ Information Switch Head Office Capital Business Units Product/Service
«Creditdebit card Operations Operations . +Board of Directors [+Cash | +Profit centers - +Product
«Currentaccount +Accouning +Trading foor Customer Servicing |- «Business Model *Fixed assets «Cost centers +Product bundle
- +Corporate current ~Commissions +Dealing posiion o 'ggee': &Corporab ey +Project teams e
account «Payments «Branch “ ommunicaions
~Creditline -\/a\yuanons «Locaion : | flows Employees +Financial
«Line of credit +Underwriing I TellerPosiion Channel Operation: R Recognifi “Income/revenue L Directors ~Quant
«Collateral «Call center +Cross channel services | on +Expenses -Managers Market risk
Financial Transaction [prauy e Sl +Branch network ~Goodwil +Staff hsiument veluaion
«Fraud detecton +Servicing positon "PBXVRU 00dWi . | <Creditrisk
.iiyé“e:,‘ SR VR ok «Brand | ABss‘e(s & I;lab‘mtles +Liquidiy sk
ARSEEIEED orchestrafon ATM “pamncesnee i *Business
«Loan “Trarsacion “E-Sranch .IE-sran‘ch n;(work Business +Of balance-sheet External Parties “Bohavioral
+Syndicated loan consolidation «Social Network LS UL Development . . «Operational
+Leasing o ~Correspondence ~Sales& markefing Financial Analyses et “Raiing
+Deposit +Booking Information Provider Physical Distribution | LdaEy 1 -{I\{Iarkemsk +Prospect
*Bearer document o «Credi P - Procedures
Documents Credit agency “Warehousing/siorage ~Capial «Consumer
«Leter of credit Marketresearch L © portiolio p o Business
<Bank e ~Archive services & 1 " HNW F
SR ERENETED | Instrument “Intemnational standards <Distubuton feet intemnal campaign _— I -Corporate +Operafional
'gzcﬁk)fl‘"gd " Maintenance «Financial market portolio Buildings & «Mulinatonal *Management
*Siock lending/Repo - reference i Equipment “Instituional
" 8 i Support services o Applications/IP
Traded Instrument Product Inventory Financalmarket Sales & Marketing “Legal - “Counterparty PP
+Pricelauole I -Materials research Audit Equipment «Syndicate L *Technique/method
Or\ge quo «Tokens +Finncial market P «Ofice equipment =L
o analyss Campaign s [" Fleetditbuion Partner EUSTZEIEND
L. Production Analysis “News | -Advertising L. Consumables «Supplier
Matching Security
. . «Productiservice . +Prospect «Finance/AML +Product service
'g\?aﬁr::‘gm" I FinancilMarket aCusomen -Hrmgf\eresources Bullding provider Knowledge
+Seflement - +Composite positon Access m Traiing | -Ofices L Erorer
«Custody *Gap ghicalcaleeng seling «Product +Ops canters *Custodian General Market
Compliance — +Deal capture L surveys «Applications *Branches «Correspondent *Marketinsights
Financial Service +Contibution ~Beal ELHTY y ~development Syt +Agency «Compefitor insights
“Brokered product o Li"c‘;"';‘”gg +Systems producton R “hvestor Locaion
*Trust o
*Remitance Enterprise Analyses 'EDe"e”"'“e"‘ Authority
nvironment
+Advisory ~Segment - -Processing & Storage Loy
L +Pubic ofering . . +Product ~Communications +Auditor
+Private placement Any bank has a collection assets that it can own or L .cysomer -Deployment +Legislator
'gash‘rgﬂgigemem have some influence over e.g. a customer gfnaa":n“e‘ peicaton
<Direct debit - . P d i
TS relationship, cash, or a payment facility. The asset ~Property
+Trade fnance needs to have an associated use or purpose
+Project finance

Figure 5: Asset type decomposition - top levels

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 19 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

In order to define unique and discrete business capability partitions, the
decomposition of asset/entity types is continued to the lowest level where elements
retain ‘unique business context’. This novel concept is explained using an analogy
with building architecture in the next figure:

Building Business
Achitecture Achitecture
Hotel Consumer
Complex Division
[] i Entertainment Business
I Floor Development
Threshold of Meeting Relationship
decomposition Room Management
! Furnishing, Meetings,
Doors, Reports,
Windiws Tasks

The ‘threshold of decomposition’ in business and building architecture

Figure 6: Unique business context example building Vs business architecture

As is shown in the above figure, once the asset/entity is decomposed below some
threshold it becomes utility in nature; meaning it can be sensibly duplicated to
perform its own particular function independently in many different business contexts.
In order to ensure a BIAN Service Domain fulfils a unique/discrete business role (in a
single valid business context) it is necessary that its associated asset type can be
found in the decomposition hierarchy in a position immediately above this threshold.

The second aspect defining the Service Domain’s role addresses the particular
function it performs on the asset/entity. Based on an iterative review of Service
Domains, BIAN has identified 18 generic ‘functional patterns’ as listed in the next
figure. One of these patterns is selected as the dominant action performed by the
Service Domain on instances of its associated asset/entity.

It can help to consider some example asset types from the previous section and run
them down the list of functional patterns to see where a combination matches the
business functions that a bank may require. For example consider a customer
relationship as the asset type and then work down the list to see where the functional
pattern combines well with the customer relationship to form a discrete business
functional capacity partition. Some of the obvious functional patterns that match
include: MANAGE (Customer Relationship Management), REGISTER
(Party/Customer Data Management), ANALYSE (Customer Behavioral Insights &
Customer Credit Rating), AGREE TERMS (Customer Agreement).

Page 20 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Managemen

t & Support
Capabilities

Resource
Managemen
t

Activity
Oversight

Resource
Assignment

Production

DIRECT

MANAGE

ADMINISTER

OPERATE

PROCESS

REGISTER

DESIGN

DEVELOP

ASSESS

MAINTAIN

TRACK

ANALYSE

MONITOR

AGREE
TERMS

ENROLL

ALLOCATE

FULFILL

TRANSACT

Define the policies, goals & objectives and strategies for an
organizational entity or unit

Oversee the working of a business unit, assign work, manage against a
plan and troubleshoot issues.

Handle and assign the day to day activities, capture time worked, costs
and income for an operational unit.
Operate equipment and/or a largely automated facility.

Complete work tasks following a defined procedure in support of general
office activities and product and service delivery functions.

Capture and maintain reference information about some type of entity.
Create and maintain a design for a procedure, product/service model or
other such entity.

To build or enhance something, typically an IT production system.
Includes development, assessment and deployment activities.

Totest or assess an entity, possibly against some formal qualification or
certification requirement.

Provide a maintenance service and repair devices/equipment as
necessary.

Maintain a log of transactions or activity, typically a financial
account/journal or a log of activity to support behavioral analysis.
Tot_%r;alyse the performance or behavior of some on-going activity or
entity.

To monitor and define the status/rating of some entity.

Maintain the terms and conditions that apply to a commercial
relationship.

Maintain @ membership for some group or related collection of parties.

Maintain an inventory or holding of some resource and make
assignments/allocations as requested.

Fulfill any scheduled and ad-hoc obligations under a service
arrangement, most typically for a financial product or facility.

Execute a well bounded financial transaction/task, typically involving
largely automated/structured fulfillment processing.

Direct a business division of the enterprise

Manage the day to day activities at a bank branch location

Administer the time reporting and billing for the specialist sales support team.
Operate the bank's internal intranet facility

Process the evaluation and completion of customer offers

Register customer reference details in a directory

Create and maintain product designs and analytical models
Build, enhance, test and deploy a major enhancement to a production
processing system

Perform regulatory tests on a proposed financial transaction; check a new offer
conforms to an existing contractual agreement

Establish a maintenance and repair program covering the PC technology used
in the central offices

Maintain a financial journal of transactions processed for a product; maintain a
log of customer events and activity for subsequent analysis

Provide behavioral insights and analysis into customer behavior; analyse
financial market activity in order to identify opportunities

Monitor the status and key indicators of a customer to influence on-line
interactions; track the status of issued cards for security control

Define and maintain the terms govering the contratcual relationship with a
customer

Administer the memebrship status of a syndicate of investors

Track the inventory and administer the distribution of central cash holdings
throughout the bank branch & ATM network

Perform the scheduled (e.g. statements, standing order32 and ad-hoc
fulfillment tasks (e.g.fund transfers) for a current account facility

Execute a payment transaction

Figure 7: Functional pattern table

The functional patterns describe a type of function that is performed. To add clarity to
the role of the functional pattern, BIAN introduced an associated design element.
This is the ‘Generic Artifact’. A generic artifact describes a document or record of
some form that may be associated with the execution of the functional pattern — to
keep track of and record activity from start to end. The table below shows the
different Generic Artifacts defined for each Functional Pattern:

BIAN

BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany

Page 21 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Functional Pattern Generic Artifact

DIRECT Strategy
MANAGE Management Plan
ADMINISTER Administrative Plan
OPERATE Operating Session
PROCESS Procedure
REGISTER Directory Entry
DESIGN Specification
DEVELOP Development Project
ASSESS Assessment
MAINTAIN Maintenance Agreement
TRACK Log
ANALYSE Analysis
MONITOR Measurement
AGREE TERMS Agreement
ENROLL Membership
ALLOCATE Allocation
FULFILL Fulfillment Arrangement
TRANSACT Transaction

Figure 8: Generic Artifacts

The reason Generic Artifacts have been added is to better describe the working of
the Service Domains by referencing something a little more tangible. The generic
artifact is combined with the asset type acted on to define a Service Domain’s control
record. The mechanics of a Service Domain and the role of its control record are
explained in more detail later but in summary an instance of a control record is
created each time the Service Domain fulfils its business role and is used to track
activity for the full life-cycle.

For example a Service Domain that handles the asset type ‘customer relationship’
and performs the functional pattern ‘Agree Terms’ with the associated generic artifact
‘Agreement’ has a control record ‘Customer Relationship Agreement’. An instance of
the control record (Customer Relationship Agreement) is created and maintained for
each customer by the Service Domain for as long as they are known and of some
interest to the bank. Another example using a more tangible asset type is an ATM
network that is acted on by the ‘Operate’ functional pattern with the generic artifact
‘Operating Session’ resulting in the control record: ATM Network Operating Session.

BIAN maintains the associations between the asset/entity decomposition, the
functional patterns and the associated inventory of identified Service Domains and
their control records in the BIAN repository. An Excel based extract of this
information is shown below.

BIAN

Page 22 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany

BIAN How-to Guide Design Principles & Techniques V7.0

Object Sub-Type Sub-Type Mapped Service Domains Comment

322 | Intellectual Property
323 Knowhow INVENTORY Intellectual Property Portfolie

e FULFILL Knowledge Exchange
Product/Service
Product DESIGN Product/Service Design
Product Bundle DESIGN Product/Service Combination Design
Model
Financial Quant DESIGN Quantitative Analysis
Market Risk DESIGN Market Risk Models
Instrument Valua DESIGN Financial Instrument Valuation Madels
Credit Risk DESIGN Credit Risk Models
Liquidity Risk DESIGN Liquidity Risk Models
Business DESIGN Business Risk Madels
DESIGN Contribution Models
Behavicral DESIGN Customer Behavior Models
DESIGN Fraud Models
Operational DESIGN Production Risk Models
DESIGN Operational Risk Models
Rating Mo SD for Credit Models
Procedures DESIGN Management Manual
Business
Operational
Management
Application
Technigue/Method
Standards PLAN IT Architecture Standards & Guidelines
Business Architecture DESIGN Business Architecture
iGeneral Market
Market Insights ANALYSE Market Research
ANALYSE Market Analysis
Competitor insights ANALYSE Competitor Analysis
Locatian REGISTER Location Data Management

Figure 9: Asset decomposition Excel extract

Behavior Qualifiers

In order to provide sufficient detail to the specification of a Service Domain’s service
operations and governed information the behavior characterized by the Service
Domain is further broken down. Based on the Functional Pattern a ‘behavior qualifier
type’ is defined and this is used to list behavior qualifiers specific to the Service
Domain. The definition of behavior qualifiers is then used as necessary to clarify the
working of the Service Domain and its offered services to provide more precision to
their purpose. The behavior qualifiers can also be the basis for defining a more
detailed specification of the information governed by the Service Domain. The
behavior qualifier types for the Functional Patterns are shown in the table below:

Eunctional § _ . - Information Profile
Brief Definition " - r) ” e

The purpose and mission for the enterprise including its competitive A collection of goals and objectives for the enterprise and its main

DIRECT Define the stralegy Strategy positioning and bases for competing in the market Goals divisions
MANAGE Oversee activity ;Ian/Charter The and oversigi;tn\;‘g:‘i‘lii sr:;nning an operational unit of an Duties A collection of one or nr:]r;rr(]earge:rggr:ﬁibilities or tasks under
ADMINISTER Administer activity /F\’ldafrf:iniStl'ative The lerical support for an | - . FaiEs A oo!le_ctiant r?; one or more clerical routines that are to be followed to
OPERATE Operate facility ggse;iabt:]r}gr__ac"“y 'al'li_:ee rc:t;pe”r)a:‘tisoen ofa i facility empl provided by Functions '[I"Sz rggl{l}f\gtlicf)gcﬁ{typerational serivces/functions offered by the
PROCESS Process work Procedure z;:‘; gf&‘m"f;ﬁa gef ?ulsﬁlfﬁgmg%gg}?; AR LA DT QTS Worksteps The main worsteps to be followed in th eexecution of the procedure
REGISTER Register details Directory Entry é{:gg%gﬁ‘ms e)) D I S Properties The properties/reference details recorded In the registry entry for items

Aspecification of a product or service offering covering all aspects
required for its use Aspects

Development Adescrete or bounded effort with a defined remit and intended

DESIGN Design solutions Specification The main design elements/views making up the overall specification

A collection of one or more deliverables that may be further defined in

DEVELOP Execute projects Project purpose/outcome Deliverables terms of an approach to be followed to create them
i A Aformal evaluation or test of a subject against a predefined set of A collection of one or more tests'evaluations that can be made to
ASSESS Test compliance ° properties or criteria Tests certify a subject
MAINTAIN Maintain resources %gg;%‘:ﬁtce gzﬁmﬁjeglyo [SIEE RIS Tasks A collection of tasks needed to support maintenance and repair work
TRACK Log events Log /:]g: '?g;g !:;"(Jé?amcz :g‘?ezje/ggrgj;%el;{g‘é 3‘;?1:22 and if necessary Events Acollection of the events/transactions recorded by the log
i : Aservice to apply specific types of analsis against a set of provided . A collection of models/calculations/algoritms that can be applied to a
ANALYSE Analyse activity Analysis data related to an item or activity Algorithms subject or activity
A mechanism to track and report on the state or dynamic property of y A collection of information feeds/measures that can be used to track
MONITOR Measure resources Measurement some item or activity Signals the status of one or more items/entitites
AGREE i Aservice to apply specifc laws and/or rules to define the terms and A collection of terms (within some jurisdiction) that can be selected and
TERMS Govern activity Agreement conditions that govern a business service or activity Terms configured to define a contract /agreement
ENROLL Register members |Membership ﬁez%'ﬁfgeg’bi’;‘l';'::s‘zﬂ’rgggg'grf‘c’;{gfgﬂg;ﬂ‘o'ﬁ toagroupwitha [gjageq Acollection of clauses that govern the eligibilty for membership
" Aservice to track the availability and allocate business resources (staff : A collection of one or more specific assignments of inventory allowing
ALLOCATE Allocate resources Allocation and/or facilities) on request Assignments for different allocation types and states
Fulfillment The fulfillment of a financial facility, including customer initiated and 5 £ . - :
FULFILL Fulfill agreement Arangement intemally triggered actionsFeatures Features The product features/services available with a financical facility
TRANSACT Execute transactions 'Transaction The execution of a financial transaction Tasks/Steps The sub-tasks involved in the execution of the financial transaction

Figure 10: Behavior Qualifiers Types

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 23 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

The BIAN Semantic API initiative has developed candidate behavior qualifiers for a
selection of Service Domains and these can be found in the latest release. More
detailed descriptions of the behavioral qualifiers can be found in the How To Guide —
Developing Content

2.3 All BIAN Service Domains Share a Common Operational
Structure

All BIAN Service Domains have the same operational structure. As already described
the high level role/purpose of a Service Domain is to enable some type of business
function (defined as a functional pattern) that is applied to instances of some type of
asset/entity. One occurrence of this role being executed for a full life-cycle or from
start to finish is managed using an instance of the Service Domain’s control record.
The full life-cycle can be further defined by identifying the main externally visible
states that the control record instance and/or the Service Domain may transition
through. For example if the role of the Service Domain is to maintain reference
details for a supplier it must do this from the time the supplier is first identified,
through all possible working arrangements/states until the supplier has no further
contact with the bank. If the role of the Service Domain is to operate an ATM network
it is responsible for the network activation, any subsequent network re-configuration,
all ATM transaction execution support and the eventual termination of the ATM
Network operating session.

Service Domain
Mechanics

The BIAN Service Domain is a conceptual design that
defines a funtional partition of banking activity:

'

Full
Lifecycle
Instances

— 3
Local State

¢ aunique and discrete operational business
capability

#

S90IAISS
paialjO

¢ all interactions are through offered and
consumed services

¢ it fulfills its business role for the complete
lifecycle, for every occurrence

S80IAIBS
pawnsuo)

¢ can act as a stand-alone entity, can even be
externally sourced

The BIAN Service Domain

Figure 11: Structure of a Service Domain

Service Domain Operational States

Later in this guide and in the second guide of the series, BIAN How to Guide —
Developing Content, the use of functional patterns, states and standard service
operations used to access Service Domains are described in more detail. The types
of externally visible states that a Service Domain may pass through depends on its
particular functional pattern. Service operation calls may only be allowed when a
Service Domain is in one or more of a pre-defined set of states and the service call
may itself result in a state change for the individual control record instance or the

Page 24 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

overall Service Domain. Some examples of external states for selected functional
patterns for reference are as follows:

Main Life-cycle States for Functional Patterns

>
‘

2.

3.

DIRECT |I : | d-strategy-p q |Strategy-in-force| |Strategy-under-reviev4 |Strateg) _Jl |“ gy JI
VANAGE " [Uwsgn] [tsretpimpmand [und | [bgrwimie] [0 o] [o]
ADMINISTER || 1 |. PP !I |L'" — { |. — — JI | P g '1 | P _{
operare
DESIGN |Designregistere4 |Design-pendind |Design-in-fort:4 |D ign-und 'll |D ign-acti p _JI |D ign-inacti 11 |Design-expire4
BEVELOP | [bovrequiredimus] [Suspendedroquiringdes] [Under-dovelopmen] [Pending | EhreE [Eo J
Assess [= e [e R pe——
MAINTAIN | H cti I|Maint-pending-in-use||Maint-pending-inactive||Under-repaiti |°,,' 4' "J]
AGREE TERMS |Agreement-pendind IAgreement-in-forcel
ALLOCATE [mactivel [Resource-poolactiveavaiablel |Resources-fulyassigned| ~ |R d [Resources-poolsenice-concluded
FULFILL | Inactivel | FuIfiIIment-services-activel I FuIfiIIment-active-qualifi34 | Fulﬁllment-suspend4

Figure 12: End to end states for the functional patterns

Note that these states only define the fairly simple externally visible states that the
Service Domain may pass through. There will typically be far more detailed internal
states for individual control records. It is also the case for some of the more complex
Service Domains in particular that there will be many finer grained functional state
cycles contained or encapsulated within the internal processing of the Service
Domain. Additional definitions of the state behaviors of Service Domains will be
addressed in later releases.

2.3.1 General Service Domain properties

The execution of the Service Domain’s role for the full life cycle is tracked/managed
using an instance of its ‘control record’. Depending on the Service Domain’s business
role it may only need to handle a single occurrence of its role at any one time (using
a single control record instance) or there may need to be many concurrent instances
at different stages in their own life cycles. For example the Service Domain
responsible for corporate strategy probably has one active control record instance,
whereas the Service Domain handling Customer Agreements will have many million
concurrent active instances.

Furthermore, also depending on the business role, the life cycle can be quite short
(measured in seconds) or could extend over many years. The Service Domain
responsible for product designs will have control record instances that last for many
years, whereas the Service Domain handling customer interactions may have control
record instances that last but a few seconds.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 25 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

A summary of the Service Domain design properties with some explanatory
examples is shown in the next figure:

Some defining Servcie Domain characteristics: .

¢ Aunique business purpose - has sole responsibility for
fulfilling a specific and discrete business purpose

¢ Itis elemental — it is not an assembly of other Service
Domains.

¢ Collectively comprehensive — all possible business activity
can be modeled using Service Domains

& Has a ‘Control Record’— the control record reflects its
business role or purpose (does something to something) BIAN
Service Domain

¢ Full Life-Cycle support — it is responsible for all possible
states of its control record

¢ Single or Multiple Instances — can have a single active ' ©o
instance or multiple active instances of its control record Full <z
(e.g. a single business unit plan, or multiple customer Lifecycle 58

accounts) Instances

¢ Short or Long Life-Span - its life-span can be short or long

lived (e.g. a customer interaction or a product design) e

08
o]
20
Sc
@3
n ®
Q,

& Service Based - all possible business activity can be
modeled as a pattern of service interactions between a
suitable selection of Service Domains

Figure 13: Design properties and Service Domain schematic

The discrete business functional capacity partition represented by a Service Domain
can be considered as being broadly equivalent to an organizational unit of the
enterprise that combines the ‘people, process and technology’. In some cases the
corresponding function may be largely automated or it may be people intensive and
make limited use of supporting technologies. As BIAN’s focus is on improving
application interoperability, most attention is paid to the supporting systems’ role for
the Service Domain and the aspects of the service exchanges between Service
Domains that are supported in some way through technology, as illustrated in the
next figure.

Page 26 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

The Service Domain can be considered as an
operational unit combining people, processes and
systems. The BIAN standard considers:

EECLE

¢ Application 2 Application — the connections

between internal business applications R RS

* Semant_lc - exchange_speuflcatlons are defined in S SYSTENS
descriptive (non-technical) language

¢ Implementation Independent — designs
independent of any specific technology I-:]-I

¢ Externalising — applications defined in terms of L:]J
unique, discrete and delegated/shared capabilities

¢ Canonical — designs that can be consistently
interpreted in any bank/technical environment

Figure 14: a Service Domain represents an organizational capability

The BIAN specification of a Service Domain includes the definition of its ‘first order
events’ for a growing proportion of the landscape. The events are used to model
simple ‘first order’ scenarios that show the calling and called Service Domains
involved in that ‘primary’ Service Domain’s response to the event. These first order
interactions are used to build up a picture of the service operation connections
between all of the Service Domains.

As the Service Doman event lists are not comprehensive not all of the possible
service operation connections will be identified. But those identified can be used to
assemble initial wireframe views that show the main connections between a selection
of Service Domains

In practice the description of the Service Domain is not always sufficient to provide
an unambiguous definition of the Service Domain for use in solution design and
development: additional example descriptive specifications are required. As with the
Business Scenarios that provide examples of Service Domain interactions these
additional descriptions are not part of the canonical BIAN standard. They simply
provide examples of possible Service Domain characteristic’s that can be referenced.

The design additions are not intended to be complete and they may not always apply
and may need to be interpreted differently in different implementation scenarios. Two
types of design extension to the Service Domains of note are:

1. One is the Service Domain ‘feature list’ that captures prevailing functional and
non-functional features of the Service Domain. An example of Service Domain
feature table can be found in the third guide of the series: BIAN How to Guide
— Applying the Standard.

2. The second is the definition of an information or object model that captures the
information/data governed and referenced by the Service Domain. BIAN has
started to develop the BIAN business object model (BOM). The BIAN BOM is
an extension of the 1ISO 20022 Business Model with proposed extensions
needed to link to the BIAN service domain and control record structures. The

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 27 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

BIAN BOM maps to the Service Domain control records and associated
behavior qualifiers as they are defined, providing a semantic definition of the
main information elements making up the Service Domain’s governed
information and referenced by its offered service operations

The details of the Service Domain specification are fully described later in this guide

2.3.2 The Responsibilities of Well Defined Service Domain Could be
Outsourced

An informal test of a well-defined Service Domain is that a practical situation can be
envisaged where its business function could be offered by a 3" party organization.
This test confirms that the partition represents a discrete business functional partition
and that the service dependencies have been fully exposed. It does not require that
such an outsourcing arrangement is preferential from a business performance
perspective, nor that such an outsourcing arrangement would involve just one single
Service Domain rather than a related collection of Service Domains. It merely poses
the question: ‘if necessary could a third party provide the business service defined by
the Service Domain through its defined service operations?’

2.4 Comparing ‘utility’ and ‘functional capacity’ approaches to re-
use in SOA

Two distinct types of re-use can be associated with service-based designs in general.
One referred to here as utility re-use typically occurs for asset type instances that
are found below the threshold of decomposition already described in section 2.2.
Below the threshold by definition the asset type instance and its associated use does
not have unique business context, meaning it can sensibly occur in two or more
unrelated situations.

When an activity occurs in many different unrelated situations it often makes sense to
implement the supporting systems solutions in a way that they can be re-used as a
utility. Utility systems solutions are valuable and their identification and exploitation is
often a goal of good systems design and implementation. Application software can
frequently benefit from including re-useable utility software elements that improve
functional consistency and reduce development cost/effort.

Though clearly important, this kind of utility re-use is not the main type of re-use
supported by the BIAN designs. Opportunities for utility re-use are typically found in
an analysis of the systems and technical architecture designs that can be linked to
the BIAN business architecture view as defined later in this document.

The main type of re-use associated directly with BIAN business architecture view
with its associated Service Domains is another type referred to here as operational
capacity re-use. This is where a unique/discrete business functional capacity
partition is re-used in the broader context of handling different business events. The

Page 28 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

earlier example of the monthly credit card payment identified five such re-usable
operational partitions, corresponding to the five Service Domains involved.

When using process models, business activity is typically decomposed to fine-gained
actions that can be supported by simple (‘input/process/output’) software modules.
These can be implemented as service enabled software utilities when they represent
logic that could recur many times in different applications. When using the functional
capacity model, much coarser grained operational partitions are defined and the
design detail is added within them to better describe their internal working, and to the
range and detail of their service specifications.

This difference results in two general interpretations of a Service Oriented
Architecture (SOA). With process-based analysis the fine-grained utilities can be
service enabled to create re-usable software elements that can be used to assemble
new applications. With functional capacity based re-use (as used by BIAN) much
coarser-grained business operational partitions (not unlike operational business
units) are service enabled. This distinction is summarized in the figure below:

Process Decomposition Service Center Decomposition
smm
Level1 @ Processing E
> fanmEm i Offered Services
Level 2:3 [srerr| - function Called Services G
Level 34...
CAPAB\LIT CAPABILITY
E =)
automation
CAPRBILT
R 10 E
A business processed is decomposed to a level of E = =1
granularity that can be represented as code C:
‘‘‘‘‘ . (s
A process‘element'can be service enabled, Capability that 1 avaNABIE A¢10ss the enterpse
creating a re-usable SW element/utility p y p

Procgssmg_ \ Offered
Choreography implemented as a dependent procedural flow of %

% Called
tightly coupled service couplets that ‘exist’ for the life of the
transaction itself Services

Comparing re-use in process and service based designs

Figure 15: Two types of SOA - process & functional capacity oriented

2.5 BIAN Service Domains must be ‘Elemental’

To define a canonical standard (i.e. a specification that can be consistently
interpreted in different deployment situations) it is essential that the business
functional scope of a BIAN Service Domain is ‘elemental’ in nature. This means that
its associated function addresses a single discrete business purpose or role. If a
Service Domain supported multiple roles then different combinations of these might
be adopted in different deployment conditions. As a result the behavior of the Service
Domain and its associated service boundary would no longer be standard/canonical.

As described in section 2.2, the approach BIAN uses to scope a Service Domain is to
define it as the combination of an asset type with confirmed unique business context

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 29 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

that is acted on by a single dominant functional pattern. This usually results in the
definition of an elemental business functional capacity partition.

The exception to this is for some asset types where the decomposition boundary that
defines the limit of unique business context may sensibly vary for different banks. For
example for one bank the decomposition of types of customer may be appropriate to
the level where corporate and consumer customer types are considered to be
distinct. In another bank, the definition of a consumer customer type may need to be
further categorized to differentiate between banking and card consumer types. For
the first bank there would be Service Domains corresponding to functions performed
on two types of customer, for the second there would need to be Service Domains
covering three customer types.

Another example where the asset type decomposition hierarchy can vary by bank is
in the area of product fulfilment capacity. In this area a Service Domain should
support the fulfilment of a discrete product/service type. But different types of bank
may wish to categorize their product hierarchies with different groupings and levels of
precision. In these situations BIAN seeks to find a sensible middle path and individual
banks can then adjust the BIAN model to suite their specific product categorization.

For example, consider the categorization of loan product fulfilment. Is it appropriate
to define a loan as a single product type? If this is the case there would be a single
Loan Service Domain that would need to support many different possible types of
loans (such as mortgages, education loan, etc.) with configurable variations to its
service operation calls as necessary. Alternatively there could be a collection of
different fulfillment service domains for different categories of loan (such as corporate
and consumer loans).

Current BIAN guidelines are that product types that have significantly different
processing states/cycles and that would also usually be booked as discrete profit
centers should be modeled as different Service Domains. As a result the preference
in the prior example would be to define discrete Service Domains for different types
of loans. These guidelines are being ratified and expanded based on practical
experience as BIAN develops more content.

As noted, BIAN seeks to find a mid-point in its Service Landscape by defining
Service Domains that can be easily adapted to align to the level of granularity suited
to a particular enterprise. The BIAN designs can be interpreted by either
concatenating or duplicating and specializing BIAN Service Domains as shown in the
next figure:

Page 30 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Service Domains Too Specific
European Equities US Equities

A

SHARED

SOLUTIONS = Equities
t European
us
Pick the = Money Markets ENTERPRISE I Equities]

Fl

level ALIGNMENT Service Domains Too General
Spot FX Derviatives

BUSINESS | Derivative
OWNERSHIP Instruments
v tOptions
SWAPS

Options | |

Figure 16: Rescoping a BIAN Service Domain

When two or more Service Domains are combined into a single Service Domain a
review of their service operations is undertaken to merge the combination and
eliminate any overlaps while retaining all of the features of the source Service
Domains. When a Service Domain is duplicated and specialized the service
operations are copied and then augmented with any unique features associated with
the more specialized functional behaviors.

Note the approach to adapting BIAN Service Domains in deployment is covered in
more detail in the third document of the BIAN ‘How-to Guide - Applying the BIAN
Standard.’

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 31 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

3 Modeling Real World Behaviors — Service Operation
Interactions

The BIAN Service Domain designs are refined and further specified by considering
various real-world situations and uses that are captured using business events and
Business Scenarios. This section covers the concepts and technigues used to
ensure the correct specification of the Service Domains and their service operation
interactions.

In particular this section describes how the BIAN designs combine a ‘process
aligned’ view where specific activities are modeled individually end to end using a
business scenario along with a more ‘networked’ view captured in a ‘wireframe’. With
the networked/wireframe view the allowed service connections between some
collection of related business functional capacities (Service Domains) are captured
and any business activity/event can then be traced as a ‘cascade’ of asynchronous
service interactions that traverse the connected network of Service Domains as
necessary using one of more business scenarios.

First Order Interactions & Business Scenarios

First order interactions are a simple form of BIAN business scenarios that is limited to
modeling activity as seen from the perspective of a single Service Domain. In this
context this Service Domain is defined to play the ‘primary’ role. These narrowly
focused scenarios consider a business event associated with the primary Service
Domain and capture the calling Service Domain that typically triggers the response
and the resulting delegation calls the primary Service Domain may require to handle
the event. This view captures the ‘first order’ connections between this primary
Service Domain and any other involved Service Domain as it ‘orchestrates’ its
response.

It is also possible that some business events are triggered internally by the primary
Service Domain, for example scheduled maintenance tasks. In these cases the
scenario will only show the resulting delegated first order service connections. The
scenarios that capture business events in this way are useful to establish the
required service connections between Service Domains that can then be referenced
to create wireframe models. But they are clearly limited in scope in terms of the types
and extent of business behaviors they can represent.

In order to distinguish between the business event modeling that is used to establish
the first order service connections and more complex business activity the term ‘First
Order Interaction’ is now used to describe these more narrowly focused business
scenarios that only capture the Service Domain exchanges from the perspective of a
‘primary’ Service Domain.

Page 32 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

The term Business Scenario is used to describe business activity that may involve
more than one ‘orchestrating’ Service and more importantly has a clear business
purpose or goal. This definition of the business scenario aligns with the evolving
BIAN business capability discussion presented earlier in Section 2.1 of this guide:

The First Order Interactions for a Service Domain establish its required
service connections. These connections provide an aspect of the definition
of the Service Domain as a business functional capacity partition

A business scenario that includes one or more orchestrating Service
Domains and one or more associated events places the Service Domain(s)
in the context of business activity with a clearly defined purpose or goal as
might be described as a business capability

These relevant design concepts are described in more detail in this section. They are
broken down as follows:

1. Business Events — For each Service Domain a collection of

representative Business event are identified. These can be externally
triggered by a calling Service Domain or may be triggered by the internal
working of the Service Domain causing it to call/delegate one or more
services. The Service Domain’s Business Events are grouped under four
established standard categories (Origination, Invocation, Reporting &
Delegation) as described in more detail below

First Order Interactions — Are simple business scenarios that detail the
specific service exchanges from the perspective of a ‘primary’ Service
Domain in response to a business event. The specification only defines the
calling service operation (if appropriate) and any delegated service
operation calls that may be required for the primary Service Domain to
handle the event. The business event is defined in general terms but does
not establish specific business context for which value or goals can be
defined

Business Scenarios — A well-formed business scenario has a clear
business start and end point and a business goal or purpose that can have
some form of associated performance or value measurement. Unlike a
First Order Interaction, the full specification of the Business Scenario
includes a more detailed description of these start/end states and the
business purpose behind the scenario. This more complete definition can
usually be related to the concept of a business capability as described.

Business Scenarios will usually be more complex/comprehensive than a
First Order Interaction, perhaps combining one or more business events
from one or more Service Domains. But it is possible for the scope of a
Business Scenario to match a First Order interaction for more simple
activities. In this case the distinction is that the Business Scenario will add
more detailed definition of the business context with start and end positions
and a clearly defined business goal. Note: a Business Scenario should
always combine one or more First Order Interactions.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 33 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4. Pre and Post Conditions — First Order Interactions and the more detailed
Business Scenarios both have pre and post conditions. In the case of First
Order Interactions the pre and post conditions simply define the allowed
externally visible states of the primary Service Domain. For Business
Scenarios the pre and post conditions are used to define the more specific
definition of the business context for the scenario

5. Wireframes — a collection of Service Domains with their associated
service operation connections for some area of activity or domain of the
business can be represented using a ‘wireframe’ diagram. It shows the
Service Domains as a loose-coupled service connected network. Business
activity can then be overlain on the wireframe as a flow through the
network of service operation connections involved for any particular
business event/scenario

6. Service Operations — The individual service operation interactions
between Service Domains are captured with the semantic description of
these service operations. More recently BIAN has added additional detalil
to the specification of service operations and the breakdown of the service
operation information payload. This breakdown has been aligned with a
parallel effort to define how BIAN service operations are used to define
semantic application programming interfaces (APIs) as described in more
detail in the associated guide

In order to be able to assemble wireframes for the overall BIAN Service Landscape it
is important for BIAN to complete the definition of the provisional First Order
Interactions as soon as is practical. However during the latest release cycle focus
was shifted to developing the semantic APl approach, essentially extending the level
of detail for selected Service domains and their service operations rather than
continue the expansion of first order coverage across the landscape. The established
first order connections do provide a foundation and additional connections will be
captured as the content is further developed.

The semantic API BIAN efforts include the definition of representative business
scenarios that can be used to ratify and extend the first order connections maintained
in the BIAN model. The BIAN central function will continue to support the
development of business scenarios and extract from these first order connections to
continue to enrich the model in the background. Business Scenario specification
developed to support the expanding API effort will continue to be ratified and refined
by BIAN Working groups.

The combination of a wireframe providing a ’'map’ of the service operation connected
Service Domains with a representative collection of example business scenarios
defines a high-level design specification of a business area/domain. A key use of this
high level design is as a framework for defining application program interfaces (APIS)
by providing the context for mapping physical systems and aligning their interfaces to
the corresponding service connections. The BIAN approach API design is covered in
greater detail in an associated BIAN how to guide. The same high-level design
specification can be used in other types of solution evaluation and development as
set out in another How To Guide in this series.

Page 34 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

First Order Interactions and Business Scenarios

In release V6.0 BIAN published a large number of the comparatively simple first
order business scenarios matched to service domain business events. These
scenarios have been retained. But with the pivot to semantic APl development the
focus changed to assembling more complex and specific business scenarios (using
established first order interactions where available). The continued development of
these more complex scenarios to support the continued expansion of the API
coverage across the landscape can be anticipated for the near term. The central
team will ensure these scenarios leverage established first order connections and
add any newly identified first order connections to the BIAN model.

The business scenario definition work will also be aligned to the BIAN business
capability definition initiative as appropriate. This will hopefully help include more
business context/detail to define the start and end position, business context/purpose
and value associated with the business scenario.

Enforcing Service Oriented Design Disciplines

A key design principle for service orientation is that the entity calling a service should
not need to know anything about how that service is provided either in terms of the
internal logic of the service provider or any down-stream service dependencies it may
have. These features should be fully encapsulated within the service provider.

The use of First Order Interactions when assembling Business Scenarios can help
enforce good encapsulation design principles. In practice the ability of a service
provider to fulfill offered services will frequently be dependent on services that they
delegate to other service providers. There are many design options that can support
the concept of encapsulation for example:

1. Constraining the Offered Service — the offered service when implemented in
production should include performance goals. So for example the committed
response time for an offered service can be set at a level where any internal
processing and/or downstream dependencies are fully provisioned. I.e. the
Service Domain does not commit to offering something that may not be
delivered

2. Internal Decoupling — the offering Service Domain can be designed to
decouple its downstream dependencies as much as possible. For example if a
Service Domain relies on another service provider to provide key information,
it can arrange to have this information in advance or in a frequently refreshed
form so that it can respond to service requests without having to make a
‘nested’ or dependent delegation call before it can respond

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 35 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

The First Order Interactions that are used to assemble business scenarios can be
referenced in more detailed implementation design cycles to identify the linked
dependencies and adopt suitable design approaches to ensure the services are as
well encapsulated as practical in implementation.

Each of the relevant behavior modeling design concepts listed above are now
explained in more detail.

3.1 Modeling Service Domain Business Events

Service Domain Business Events have been used to identify example First Order
Interactions that can be used to demonstrate the operation of a selected Service
Domain — referred to as the primary Service Domain for the defined events. The
business events are described in terms of the necessary actions as seen from the
perspective of the primary Service Domain. Note that the focus of BIAN for the latest
release cycle has been on extending the service domain definitions to support API
specifications. As a result there has not been any significant development of the
definition and application of Service Domain business events in the latest release
cycle. The use of events described here is likely to be refined and continued in future
releases.

There are some wide ranging business activities that may trigger a range of
concurrent business events in many different Service Domains that may or may not
be directly connected. For example when a bank establishes a new customer
relationship many different parts of the bank may need to respond and these
responses may not always be fully synchronized/coordinated across the enterprise.
To fully handle such an activity several First Order Interactions would need to be
defined: one for each Service Domain that is impacted by the arrival of the new
customer.

The working assumption motivating the definition of First Order interactions is that
any and all required service operation connection between Service Domains can be
matched to underlying business events and service operation exchanges at the first
order. As BIAN defines more business events and their associated interactions the
BIAN model will contain an increasing proportion of all possible/sensible service
operation connections in its ‘database’. These service operation connections can
then support the derivation of wireframe models and support the assembly of more
sophisticated business scenarios.

The business events identified for a primary Service Domain are grouped under four
categories. These categories called ‘responsibility types’ are also used to classify
service operations. The business events listed for each Service Domain provide
examples of activity that triggers a response on the behalf of the primary Service
Domain. The different responses can be further related to the way the Service
Domain handles the control record instances it manages to govern its execution:

Origination — origination events result in the creation of a new control record

instance (or for Service Domains that handle some persistent operational
activity can configure/re-configure that activity). For example register a new

Page 36 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

customer agreement or reconfigure the priorities for the guideline compliance
business unit/function.

Invocation — invocation events initiate processing activity associated with an
existing control record instance. For example update the details of an existing
customer agreement, perform a check that a proposed activity conforms to the
terms of that agreement or book a transaction against a financial facility.

Reporting — reporting events include both reporting requests and pre-
configured notification services where the primary Service Domain provides
details of its active control record instances and/or any historical and analytical
views it might maintain. For example provide the current terms of an active
agreement or an analysis of updates made to customer agreements over a
period. Reporting events differ from Invocation events in that there is no work
done or content change made to the control records themselves

Delegation — delegation events are internally triggered by the primary Service
Domain. They may arise from some internal scheduled processing or may be
needed to support the handling of an offered service. The events capture a
dependent service operation call to some supporting Service Domain that is
needed for the primary Service Domain to fulfill its role. For example the
Customer Agreement Service Domain may delegate to Regulatory
Compliance to obtain compliance requirements and to subsequently confirm
compliance. Note: the BIAN designs assume that there is no formal
connection between an offered service and any delegated service calls that
may result — they are treated as fully decoupled activities

The purpose of a Business Event is to identify an example business trigger that
causes the focus Service Domain to act. The business event can then be modeled
using a simple form of business scenario: the ‘first order interaction’ that defines the
service operation exchanges. An example collection of business events is shown for
a Service Domain in the next figure (note this view is a screen shot taken from BIAN
tooling)

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 37 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Sales and Service .5%

Zales

Lead/Opportunity Management

Lead/Opportunity ManagementOrigination Configure Operational Settings
Configure Operational Settings
Configure the operational settings for Lead/Opportunity processing
In production
Lead/Opportunity processing parameters updated

Lead/Opportunity Management/nvocationRecord Lead/Opportunity
Record Lead/Opportunity
Record new leads/opportunities for later processing
In production
New leads/opportunities recorded

Lead/Opportunity Management/nvocationUpdate Lead/Opportunity
Update Lead/Opportunity
~~ Aatailg for active lead/opportunity (e.q. to report proceseina handlad aleawharnt

Figure 17: Example Business Events for a primary Service Domain

3.2 Modeling First Order Interactions

Each business event that is identified for a focus Service Domain is then used to
define a First Order Interaction that as noted earlier is a constrained/limited type of
business scenario. The First Order Interactions have a derived name that
concatenates three elements: The focus Service Domain’s name, the category of the
business event and the descriptive name of the business event. So for example the
First Order Interaction associated with the ‘new customer’ business event as handled
by the Customer Agreement Service Domain has the derived name:
‘CustomerAgreement|Origination|NewCustomer’.

Every First Order Interaction is modeled as a simple constrained business
scenarioffirst order interaction. This is currently represented as a business scenario
in the BIAN repository with the current release. As noted below as BIAN develops
more sophisticated business scenarios a more formal distinction will be made
between these First Order Interactions and the more comprehensive business
scenarios. The interactions include the following elements:

Page 38 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Calling Service Domain (Optional) — the interaction may optionally identify a
‘calling’ Service Domain. This is a Service Domain that calls the offered
service of the primary Service Domain that is associated with the business
event. There can in practice be more than one candidate Service Domain to
call the service operation associated with the business event and if necessary
several First Order Interactions could be developed. For example the request
to set up a new customer agreement described earlier might come from
different operational centers (and their associated Service Domains) in a bank.
The calling Service Domain is an optional aspect of the First Order Interaction
as there may be business events that are internally triggered by the primary
Service Domain

Primary Service Domain — the main aspect of the First Order Interaction
captures the likely sequence of delegated calls made by the primary Service
Domain in response to the called service operation or its own internal triggers
Called Service Domains — the First Order Interaction will list one or more
Service Domains that the primary Service Domain calls on/delegates to in
order to fulfill its responsibilities associated with the business event. As noted
any secondary service exchanges that these called Service Domains may
need to make are not captured in the First Order Interaction as these
represent second order/’dependent’ connections.

BIAN has developed tooling support to help with the definition and reference to First
Order Interactions. The screen capture below shows the way the BIAN Workbench
tool captures a First Order Interaction as a simple business scenario. The complete
user guide for the BIAN Workbench tool is covered in a separate publication.

umaormer
Lead/Dppertaney Py Data Customes
"”"

resens woroem rew sevvppernaky

et ot extones sl

........................

Figure 18: Example First Order Interaction

3.3 Modeling Business Scenarios

As already noted as BIAN expands its coverage of Business Scenarios a more
formal distinction will be made between the simple business scenario layout used to
capture the large number of first order interactions for all Service Domains and the
more comprehensive Business Scenarios in future releases. The updated Business
Scenario definition will add more business context, in particular detailed descriptions

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 39 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

of the start and end business condition/situation, a more detailed definition of the
business goals/purpose and possibly some form of impact/value measurement. This
more involved definition aligns with the work being done to add a business capability
perspective to the BIAN model.

A Business Scenario is intended to represent an archetypal business behavior. A
number of qualifications can be made of the derived Business Scenarios that can be
found in the BIAN service landscape:

¢ Not Canonical - the Business Scenario is not canonical (it does not define a
standard pattern of behavior). It simply provides a realistic example of
business behavior that is used to provide context for defining the service
operational characteristics of the Service Domains involved

¢ Not Prescriptive - the Business Scenario is not intended to define a specific
pattern or sequence of behavior that should be followed, nor does it
necessarily attempt to be exhaustive/complete in its content.

¢ Not Discrete — the pattern of service operation interactions captured using a
Business Scenario for one business situation can and often will overlap with
other Business Scenarios

Business Scenarios are used to establish the service operation connections between
a suitable collection of related Service Domains that are involved in the execution of
some kind of business requirement or need. It models an archetypal pattern of
service operation exchanges between all of the involved Service Domains. Unlike a
process representation that defines the precise logic and sequence of tightly coupled
tasks, the BIAN business scenario simply identifies the Service Domains involved
and highlights likely service exchanges that could occur between them. It does not
presume the sequence nor the timing and protocol for the exchanges, it merely
represents that some form of business interaction between the business capacity
functions represented by the Service Domains is possible.

The scenario does not mandate the use of any particular service operation in any
specific situation that it may present. Furthermore a BIAN business scenario need
not be exhaustive in terms of the participation of service domains it reveals, the steps
it includes or its start and end conditions — it is merely providing meaningful business
context to help describe the particular service exchanges that it includes. The original
purpose of the business scenario is to discover and clarify service operation
connections/exchanges between Service Domains by providing the example context
of a real world business situation.

Despite the many limitations just described, the BIAN Business Scenario has been
found to be a powerful tool for interpreting and applying the BIAN standard. As a
result a more structured approach to defining the scope and coverage of Business
Scenarios is being adopted in BIAN. The use of the Business Scenario has evolved
from being a tool to identify and ratify service connections to being a way to present
how Service Domains interact to support specific business activity.

BIAN Working Groups and other BAN initiatives continue to define collections of
representative business scenarios that are needed to define the main

Page 40 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

activities/working of aspects of the business. A current area of focus is using
Business Scenarios along with other BIAN artifacts to support API design and
development.

Various tools and formats are used within BIAN to capture and present business
scenarios. Below a Powerpoint version is used to outline the standard design
content.

Steps in the f f Service Domains
. S io: Th t ke t t theil t 1t f i t .
process'ng are cenario € customer makes a transier payment from their current account to a savings accoun deflne the

e (@ .
summarized in tacton Ji| “sence columns, but this
brief

feature need not
be expanded on
in great detail

Most interactions
will involve some

kind of
response... A simple
narrative can be
used to

Gewre

summarize the
general flow of
activity

...but this is not

mandated \

Design Checklist —{ Called Service E

+ One column = One Service Domain :

& Boxed text describes ‘calling’ and ‘called’ action ‘ : i| Execute fraud/AML
«+ Flow implied by lines (in at top, out at side) REETIENEE (optlonal)}=§= transfer test

« Limit intermedaite steps (i.e. those with no i

associated service call)

Figure 19: An example business scenario with guidelines

Note the figure above does not include the additional design content that will be
added in future releases including pre and post states, goals and performance
measures. There has also been a refinement to the business scenario to support the
APl initiative. This refined business scenario representation is shown in the
corresponding API How to Guide.

The main distinction between a business process and a BIAN Business Scenario has
been described in the previous Section of this guide. However this comparison has
been applied for business processes that are defined the level of granularity where
the behaviors can be sensibly mapped to service operations between Service
Domains. One strength of process modeling is that it can be applied at varying levels
of detail where as BIAN business scenarios are constrained to being defined only at
the level of service operation exchanges between Service Domains. The way
process models at other levels of detail relate to the BIAN view are as follows;

e Processes at a higher level of detail — there are few obvious situations
where a business activity or event is so high level that it can’t be captured
as a collection of one or more Business Scenarios. One example would be
where a process view is used to capture business exchanges/agreements
between commercial entities in the financial services industry

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 41 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

e Processes captured at the same level — for defining business
requirements it is common to find process definitions at about the same
level of detail as the typical BIAN Business Scenario. The role of the
Service Domain can be loosely compared to ‘Actors’ in some process
model formats. But as noted, the tightly coupled sequence of the process
has no equivalent in the Business Scenario

e Processes at afiner level of detail — process models can also be used to
define much finer grained activities as might be found within the internal
logic of a Service Domain. BIAN does not presume any particular internal
logical design for a Service Domain. The best technical design approach
should be selected based on the Service Domain’s desired operational
characteristics. For example multi-threaded process design versus a state
driven object based design.

Distinguishing between transactional and reference and reporting traffic

Many Service Domains need to access reference business information that is
governed by other Service Domains in the execution of their role and also provide
performance reporting to management. For example, the Service Domain
maintaining customer contract details needs to be kept up to date with changes in the
reference information for that customer (such as their legal domicile). Sometimes this
reference information is exchanged within the flow of a transaction as might ba
captured in a business scenario — for example checking a customer’s available
balance before making a payment. But a significant portion of this type of information
exchange occurs in the background based on implied or explicit notification
agreements established between Service Domains.

The BIAN Business Scenarios developed to date have concentrated on modeling
transactional activity and exchanges. The addition of business events and First Order
Interactions has highlighted other types of service operation exchanges. These
exchanges support the background coordination of reference information, such as
standards, policies, guidelines and budgets. In addition they support the exchange of
performance analysis and other management reporting flows that may be needed to
govern business operations

Depending on the particular role of a Service Domain its service exchanges with
other Service Domains will typically include transactional exchanges but may also
involve some proportion of background reference and management reporting
information exchanges. The business events and First Order Interactions include
reference and management reporting exchanges in addition to the more familiar
transactional traffic and will help identify these less obvious, background interactions.

3.4 Pre & Post Conditions

The definition of a business scenario can specify associated pre and post conditions.
For the simple First Order Interactions this definition is limited to defining the allowed
externally visible states of the Service Domain. This provides some basic insight into
when a service exchange may or may not be allowed.

Page 42 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

The definition of pre and post conditions will increasingly be used to establish the
business context for more complex business scenarios. One particular use of pre and
post conditions will be to highlight dependent sequences of interactions between
events and their associated Business Scenarios. For example noting at the
conclusion of the handling one event that another particular event will typically follow.
This helps establish the start and end position of a scenario and can also be useful to
clarify the related flow of activity between business scenarios by highlighting the
dependency in the post condition description and corresponding pre-condition
description.

For example: customer offer processing when successful will typically initiate
(delegate) product set-up in the product fulfillment Service Domain once the offer
processing has been completed. This will be captured as a delegated service call
with an associated business event for the Customer Offer Service Domain as can be
highlighted with an associated description in the post condition field of the offer
processing scenario.

3.5 Wireframes

Wireframe models have been described in earlier versions of the BIAN How To
Guides. As BIAN designs are increasingly being used in design specifications
wireframes are proving a useful mechanism to provide a stable framework for
mapping Service Domains to systems solutions.

The wireframe diagram captures the known or ‘allowed’ service operation
exchanges available between a suitable selection of Service Domains. It presents a
stable framework or a ‘static’ structure. A Business Scenario on the other hand
describes a dynamic behavior. It shows the flow of Service Domain service operation
exchanges resulting from some business event or request. Business Scenarios can
be traced as a ‘point-in-time’ flow of service interactions that traverses the wireframe.

The value of the wireframe is that it represents the scope of business capabilities in a
stable format that can be readily related to some area of the business. For example a
wireframe can be defined to cover the responsibilities of a business unit or mapped
to the functional coverage of a business application. The required dynamic behaviors
can then be captured using as many business scenarios as necessary that can be
overlain on the wireframe to confirm the service exchanges and operation of the
Service Domains meet behavioral requirements.

A variation of the wireframe perspective called a ‘Service Domain Cluster’ is
described later in this guide. A cluster also groups Service Domains as they might
map to a business unit or application but also allows for Service Domains to have
different implementation roles within the cluster. In this way the cluster can be used
to define the service boundary for a physical business application. This service
boundary then provides a framework for defining the application implementation
integration requirements.

The final format of the BIAN wireframe view has not been finalized. In current uses a
less formal notation is used where the links between Service Domains that represent

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 43 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

a service operation connection simply need to connect to any point on the boxes
representing the Service Domains.

In later releases a more formal representation may be considered where the
connection point to the Service Domain corresponds to key properties of the service
exchange. The connection point on the Service Domain element is determined by the
type of service operation (as characterized by the service operation ‘action term’) and
whether the service operation is offered or is a call/delegation. The positioning also
reveals whether a new control record instance is created as a result of the service
operation call or whether the exchange acts on existing control record instances.

This additional detail is expected to be useful when BIAN extends the specification of
internal states for Service Domains. The figure below summarizes the general
positioning of service operation connections to a Service Domain in the more formal
version of a wireframe

>

Offered Delegated/Called

s 8 . .
90858 services,/ Services
8 58e /
[v] @ o 8
I
Register
Update
- n 5 Record
Register Service Domain Execute
Undate Offered serviceg Evaluate >
Record Provide)
;x::ie Authorise i
uate | =&
. Request
Provide - Terrminate Steady £ | State
Authorise) 8
Request Notify &
Terminate V4 Retrieve »
Notify 4
Retrieve Qa),;.
%%, %
/4 N
o
i o%z§ ¢
/ Esag
° @

Figure 20: Service Domain's general Service Connections

The links between Service Domains in the wireframe correspond to an allowed
service operation exchange. The connection is labeled with the associated service
operation ‘action’ term (as defined later in this section) and the arrow points from the
calling to the called Service Domain. (As noted, in the current release the notation of
the wireframe allows the service operations can connect to any point on the calling
and offering Service Domain — a notation that may be revised in future releases)

Page 44 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Valuate
%@ —) g —
Corporate Credit Guideline Regulatory
Treasury Management Compliance Compliance

Party Data e
Management
Collateral
Management N
: e Location Data
Issued Devi =eold Product/Servi ate
Administratio ce Eligibility Management
n

Customer
Reference

E-Branch
Operations
CED

Contact
Handler

ata
Management

0

Collateral
Asset 'Retrieve I Customer Prospect Contact Customer
Administratio ‘[Offer Management' Dialogue Workbench
EXecute PExecute
n Consumer g
Loan
;m v Customer eque Leadlﬁppmu
Request Regquest Credit Rating Management

Underwriting

Correspon-
lence

Customer
Agreement

€T .| Sales Product

Agreement

‘

Customer
Precedents

Product
Directory

Figure 21: Wireframe example - informal connections

For information purposes only, a wireframe where the service operation connections
align with the type of service operation connections described earlier looks as
follows:

Wireframe — Consumer Loan — Interest &
Redemption, Collections & Customer Risk Revision

Loan
(any type)

T Party Data il Customer Customer
S Management - Event History Billing
<D
pHI s Pfoduct o Corporate
Order Directory Treasury
Correspon-

I dence

D
Open Item

Management

Fo— Customer Tax
Handling

Sales Product
Agreement

Position
Keeping

Collateral
Allocation
Management

Financial
Accounting
(Ledger)

Financial
AdmAi:iss(::alio REESL Instrument
n Valuation

Customer
Credit Rating

Financial
Market
Research

Credit Risk
Models

Customer
Agreement

Figure 22: Wireframe example - formal connections

The value of the wireframe model is that it defines a static or stable structure that is
more easily related to the organization or business applications of a bank. The
Business Scenarios remain a key aspect of the standard by describing the allowed
behaviors that are supported and these can be mapped as appropriate to a
wireframe model view.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 45 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

3.6 The Semantic Definition of Service Operations

The core of the BIAN industry standard is the semantic definition of the service
operations offered and consumed by Service Domains. BIAN’s service operation
specifications are intentionally ‘implementation agnostic’ - the specification includes
nothing that relates to any possible technical implementation. This includes
communication protocols and the likely message exchange choreography. A Service
Domain exchange that is captured in a BIAN service operation as a semantic
description of information provided and information returned may in practice result in
a broad range of physical exchanges not limited to:

e A simple one-way delivery of information possibly with acknowledged receipt

e A simple request for information with a timely complete response

e An interactive dialogue to progressively narrow in on the required information
by developing increasingly detailed query criteria

¢ Any of the above types of information request that results in a delayed
response at some point in the future

e Any of the above types of exchange that results in the allocation of some
facility or resource

e Any of the above types of exchange that is accompanied by the physical
movement of goods or other resources.

When using the BIAN semantic service operations to specify an interface or service
interaction it is necessary to determine the operational characteristics of the many
exchanges. This definition will be site specific and so no operational properties of the
exchange are defined, simply the make-up of the business information that is
exchanged and any associated service fulfilment dependencies.

A general guideline used within BIAN when defining a Service Operation is that to be
complete, the semantic service operation information content should include all of the
main business concepts involved in an unambiguous way such that a basic technical
design can be developed to implement the exchange without further significant
business input (other than to perhaps provide clarification of detail). However, the
BIAN description is only intended to describe the mainstream features of a service
operation: those that are anticipated to apply in most deployments. So for example
additional business input would be needed to specify unique/differentiating,
advanced or location specific needs.

It is assumed that the BIAN designs will be referenced by individuals already expert
or at least highly familiar with the subject area. The intention of the BIAN specification
is to establish the business purpose and core information exchanged through the
service operations and to clarify the functional capability partitioning represented by
the Service Domains. It is not the intention of the BIAN standard to provide an
exhaustive specification and explanation of requirements (as might be expected in an
educational or reference definition).

In time BIAN may augment the main/common Service Domain and service operation

information content definitions to also capture optional extensions/specializations that
could be relevant based on qualifications such as geopolitical context,

Page 46 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

scale/performance requirements and/or, level of sophistication. At this time BIAN’s
focus is on defining only the common/mainstream specifications.

Some specializations may also be needed to deal with different implementation
situations and technical environment considerations including the integration of major
packages, proprietary standards and technologies. These implementation level
details may be also recorded using some appropriate mechanism and linked or
mapped back to the BIAN standard for reference and reuse purposes. However
these particular specifications would not be part of the BIAN standard which is
intended to remain implementation (and commercial product) agnostic.

The structure of a BIAN service operation specification is explained in more detail in
the second document of the BIAN ‘How-to Guide - Developing Content.” The
specification includes three primary design considerations/concepts that are outlined
in this guide:

1. Allowed types of exchange — these have been discontinued

2. Standard service operation parameter types — each service operation is made
up of a standard collection of parameters

3. Service operation standard action terms — a standard list of allowed action
terms defines the main types of service operations

4. At a minimum the BIAN service operations include a checklist of the types of
information exchanged. In the latest release the checklists are replaced with a
more comprehensive list of attributes for selected Service Domains.
Furthermore there is an ongoing collaboration between BIAN and 1SO to map
the content to the 1ISO20022 Business Model

5. Checklist Information is referenced in the BIAN Vocabulary — all BIAN specific
terms including the definition of checklist items is included in the BIAN
vocabulary tool

These are set out in more detail below:

1. Allowed types of exchange — in previous releases BIAN defined four
types of exchange that characterized the operational dependency between the
involved Service Domains. In practice it has been found that the same service
operation can sensibly be implemented using several of these types of
exchange depending on local conditions. As a result the classifications add
little insight and can be misleading. The classifications have been
discontinued. The selection of the appropriate protocol for the service
operation exchange is now a task that has been moved to the implementation
level design. For reference the exchange types that have been discontinued
are outlined below:

A two-way exchange — the calling Service Domain expects the
response immediately so that it can continue with its work.

A request with an anticipated delay in the response — the calling
Service Domain anticipates that the response will take some time and
so will continue with other work and monitor for the expected response.
A hand-off notification — the calling Service Domain once passing on
the necessary detail has no further operational interest in what the

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 47 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

called Service Domain does (no response expected other than possible
acknowledgement of receipt).

Provision of previously subscribed-to updates — the calling Service
Domain has at some point subscribed to updates from the called
service domain.

2. Standard service operation parameter types — a BIAN service operation
has four parameter types that capture the information making up the payload
of the service operation. The same four parameters describe the content of
the call and response aspects of the exchange:

Identifiers — define the information items that can be used to isolate the
control record instance or collection of instances that are being
accessed.

Depiction — represents the information content of the control record
that may be provided or returned.

Instructors — defines ‘parameters’ governing the requested action such
as timing, priority and any action selection options (this can include the
specification of reporting/query details).

Analysis — references any tracked/derived values associated with one
or some combination of control record instances that provide historical
and or analytical views (as would be maintained by the called Service
Domain).

The main content of the service operation will be a selection from one or more
control record instances that are governed by the offering Service Domain.
The way the control record maps to the service operation varies slightly
depending on the type of service operation as indicated by its action term. In
general terms the control record content maps as follows:

a. ldentifiers — are extracted information items taken from the control
record that can be used individually or in combination to uniquely
identify the instance.

b. Depiction — contains extracts or the complete content of one or more
control record instances — this is typically the main payload of most
service operations.

c. Instructors — have no connection with the control record content other
that possibly making some reference for selection/filtering purposes.

d. Analysis — does not reference control record content, but historical and
analytical views maintained by the Service Domain in addition to
handling control records. The analysis typically provides operational
and analytical insights covering the operation of the Service Domain.

In addition to the input and output parameter descriptions the Service
Operation lists the allowed pre and post states of the Service Domain. These
are described in more detail in the How To Guide — Developing Content. At
this stage the use of Service Domain states is very limited. These service
operation fields have been retained as it is anticipated more detailed state
analysis may be included in later releases of the BIAN standard.

Page 48 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

3. Service operation standard action terms — Because all Service Domains
have a common operational structure (they implement the full life cycle of
some pattern of behavior on an instance of some type of asset) it is possible
to define a standard collection of action terms that characterise the different

possible types of service operation offered by a Service Domain.

Begin an action including any required initialization

Initiate | tasks | A payment transaction is intiiated
Actions o set- Create | Manufacture and distribute an item | A new analytical model design is created
up, establish a
new control ini i
ek Activate | ggmrg:nce/open an operational or administrative | The ATM network operation is actived
Confi Change the operating parameters for an ongoing The on-line ATM's in the network are changed to take machines
ONMIgUre | seryice/capability out of service
Update | Change the value of some (control record) properties | :dc[’L:z!S()smer's reference details are updated with a change of
Register | Record the details of a newly identified entity | A new customer's details are captured
Record | life cycle step plan
Execute | Execute a task or action on an established facility | A payment is applied to a charge card

Actions to

access/updateli X X
nfluence an Evaluate | Perform a check, trial or evaluation |

established customer’s existing agreement

The eligibility to sell a product is checked against the

instance

Provide | Assign or allocate resources or facilities | A branch requests an allocation of cash for its tellers

Authorise | Allow the execution of a transaction/activity | Regulatory compliance authorises a product design feature

Request | Request the provision of some service current account

A customer requests that a standing order is set up on the

Capture transaction or event details associated with a | An employee logs time spent working on a project against the I

Terminate | Conclude, complete activity | The use of a product version is terminated

Delegation - no new action terms apply as the called Service Domains offer the same Origination/Invocation & Reporting options described here)

= Actions to Notify | Provide details against a predefined notification | A unit subscribes to update notifications from the customer I
£ extract details agreement agreement service domain
and subscribe
to updates Retrieve | Return information/report as requested :r?alayc;osu'r;tqulsatgge is obtained and a report covering activity

Figure 23: Action terms, descriptions and examples

Different selections of these standard action terms sensibly apply to the
different functional patterns of the Service Domains. A default mapping is
shown in the summary table below. Note that the precise working of any
specific Service Domain may require changes to this default mapping. Some
action terms may not apply, other may be required and in some cases more
specialized services can be defined. This is explained in more detail in How-to

Guide — Developing Content.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany

Page 49 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Initiate
Create
Activate
Configure

i

=
8
=
]
=
=
=
o

Updal
Registe
Record

Execu

Evaluate

Invocation

il

Provide
Authorise
Request
Terminate

N EEEN NEEE

N NN NN EEEE

N NNEN Ny T
_HEEEE N) | NS

N EEEN By RS
B8 (B Bl | [
B8 B (B WEE

N NEENEN § | NS
_|NEE NN N] EEETES
BEOE | (BB B [B
__|H NEN NN NN R

HLAR | B B[
A8 ([B[BB [[
| NEEE N ERETC
BE0 (B8 | BN | [
BB 00 BEE | [
BLE ([AEEEE | [~
] HEEE N OJEE RS

L _|__|__| I
Default service operations mapped to the functional patterns
(Green box indicates a match)

:

Figure 24: Action Terms mapped to Functional Patterns

4. Service operations select from a standard information profile — With
the latest release BIAN has added significant detail to the semantic
information content of the Service Domains that is accessed through its
service operations for a selection of Service Domains. This new content has
been generated in coordination with an initiative to support API design using
the BIAN standards. This updated content will progressively replace the
current checklist based ‘information profile’ definitions that describe the type of
information governed by a Service Domain that is used to select the service
operation information content.

The way more detailed content is being added to the Service Domains and
service operations is described more fully in the BIAN How to Guide —
Developing Content. Here the information profile approach that produces the
original ‘checklist’ based service operation content that is being replaced is
briefly described.

The Service Domain’s ‘information profile’ includes the information make-up of
the Service Domain’s control record and any historical and analytical views the
Service Domain may maintain for one or the complete portfolio of its active
control record instances. The control record portion breaks down into three
different types of information:

¢ Information Items — are references to singular properties or measures
such as a date of birth, amount or location. Information Items can be
used as indexes to select a particular control record and they typically
map directly to data elements or simple data structures

Page 50 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

e Information Records — are structured collections of information items
that might make up a transaction record or data entry form for example

e Information Reports — represent any free-form/unstructured
information such as a free-form report or a scan of a document

BIAN defined an initial check-list of representative types of content that can be
selected from to define the Service Domain’s information profile. Selections
from this overall list were then made specific to the different Service Domain
functional patterns. Definitions of the candidate information elements can be
found in the BIAN vocabulary.

Control Record Properties

Functional

Identifiers Generic Items Pattern Specific Records

1 Items

z2ing0peratingS | actionTupe tokenualue SctvipRecord T aigetAcal
h

Service Domain Analytical Views

Individual Analytics Portfolio Analytics

2queProcessingDperatingSe | chequeProcessinglperatingSessi | chequeProcessingDperatingSe ssi
wonFeport onfccumulators onPortfol ity sis
iagniosisiResolution chequeProcessingDperatingSessi | chequeProcessingDperatingSessi
documentCopulRecarding ondctivinginalusis arPortfolioMake-UpAnalysiz
incident!EventReport!Resalutio [chequePraceszsingOperatingSessi [chequeProcessingDperatingSessi
n onPerformancefnalysis onPortfolicPerformancefnalysis
chequeProcessingDperatingSessi
Fevize i tereres] TeRer e onTrendsEvents
mOperatingSe |col n
dai
eeeeee
Feferer Se: proach corespondentBankFullilmentinra | conespondentBankFulfilmentrra
loc. srrespondentBankFulfilmentd [ngementAccumulatars ngementPartfalicActivitnAnalysis
InetionType angemertFleport corespondentBankFullilmentéres | conespondentBarkFulfilmentérs
b | documen tCopy!Recarding ngementfctivityfnalysis ngementPortfolioMake-Upfnalysis
guideline corespondentBankFullilmentira | cornespondentBankFulfilmentdrra
incidert/EvertPieponiPesolutio | ngementPerformancenalusis ngementPortolicPerformanceinal
n comespondentBankFullilmentarra |usis
palicy ngementTrends&Events
tu | publication
It
"B =glution financiall warem - =

Figure 25: Information Profile extract

An extract from the Service Domain’s information profile can next be mapped
to the parameters of the service operation. This mapping varies depending on
the service operation action term. A standard mapping template was been
used to create the service operation profile content.

As a result, the default service operations each contain a checklist list of
information content descriptions that has been selected from the overall
checklist to reflect both the functional pattern of the host Service Domain and
the type of service it provides as defined by the service operation action term.

As mentioned this standard information profile that was defined to generate
descriptive content for service operations is being progressively replaced with
more detailed and specific information descriptions in coordination with the
BIAN Semantic API initiative. With the latest V7.0 release 67 selected Service

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 51 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Domains and their service operations have been updated with more detailed
definitions.

The new service operation information content is also being mapped to an
extended version of the ISO20022 Business Model, creating the BIAN
Business Object Model. Examples of the more specific service operations can
be found in the latest Service Landscape release and the associated BIAN
API development portal

5. Checklist Information is referenced in the BIAN Vocabulary — As noted
earlier, all of the BIAN specific terms including definitions of the checklist items
are included in the BIAN business vocabulary.

3.6.1 Specialized service operations

BIAN defines a standard set of default service operations for a Service Domain
based on its particular functional pattern where each service operation is
characterized by one of the selected action terms. For some of the more complex
Service Domains, those involved in product fulfillment in particular, the standard
default collection of service operations is insufficiently detailed at the level of the
action terms.

For these more complex Service Domains there can be some contained or
embedded operational features that merit their own direct service based access. In
this case the most appropriate type of service operation (based on the action term) is
duplicated and each duplicate specialized with a qualifier term representing its more
specific purpose. The qualifier term used in these cases is called a ‘behavior qualifier’
defined for the Service Domains functional pattern as mentioned in Section 2.2. of
this guide. The approach is more fully described in the BIAN How to Guide —
Developing Content.

An example clarifies the approach. For the Service Domain that handles fulfillment of
the Current Account facility the ‘request’ action term is used to access the range of
services that are on offer. The Current Account Service Domains functional pattern is
‘Fulfillment’ and the behavior qualifier type for fulfillment is ‘features’ referring to the
different product features that are supported. One of the behavior qualifiers defined
for current account handling would be support for ‘standing order’s.

Typically the Instructor field of the service operation could be used to select the
specific type of request. However in the case of a major product fulfilment feature
such as a standing order a design decision can be made to define a specialized
‘request’ service operation that acts on the standing order functional element
specifically.

The result is a service operation as follows:
‘requestCurrentAccountArrangementStandingOrder where the ‘standing order
behavior qualifier has been tagged to the end of the service operation name to define
its more specific purpose. A broad range of extended service operations with the

Page 52 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

associated behavior qualifiers has been defined under the API initiative for selected
Service Domains. As noted, this extended definition is explained in more detail the
BIAN How to Guide — Developing Content.

As BIAN develops more detail specifications for the API initiative more specialized
service operations will be identified. The formal guidelines for when more detailed
specialized service operations are defined have not been finalized at the time of
writing. A key influence is the make-up of the underlying information message. When
services exchanges with the Service Domain using the same action term but in
different usage scenarios result in significantly different information content this is a
good indication that a specialized service operation using the associated behavior
qualifier is required.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 53 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4 Interpreting the BIAN Standard in Implementation

The BIAN standard is defined at the business architecture level. As explained in
Section 1 of this guide it also adopts a service-based perspective (a service oriented
architecture SOA). In order to leverage the BIAN standard its business level
representation needs to be related to different systems architecture views for
systems solution design and deployment. The systems architecture views required
will vary depending on the deployment approach and the target technical
environment.

BIAN members tend to apply the BIAN standard in two fundamentally different
deployment situations. In one the BIAN standard is used to help define well-bounded
or ‘targeted’ system implementation solutions. In the other the BIAN standard is used
to create a much broader “enterprise blueprint” that can be used for a wide range of
business and systems planning and analysis activities.

In this section the interpretation of the BIAN standard is covered as follows:

1. Relating the BIAN business architecture to underlying application/systems
architectures — some general considerations
2. Clustering Service Domains
3. Mapping the BIAN standard to other industry standards
4. Applying the BIAN standard in three different technical implementation
environments.
e Conventional (legacy/core) application renewal/rationalization
e Host/ESB integration and application assembly
e Loose coupled distributed/cloud and micro-service architectures
5. Using the BIAN standard to define an enterprise blueprint that can be used
for business and systems planning and analysis.

Note that in this document the design concepts and principles are explained in
general terms. The specific guidelines and techniques used to deploy the standard
are repeated in more detail the third document of the series: ‘How-to Guide -
Applying the BIAN Standard.’” Furthermore BIAN has produced several more formal
descriptions of how the BIAN specification can be related to more traditional
architectural model views and various standards in other documents that can be
found on the BIAN website.

4.1 Mapping BIAN’s Business Architecture to Systems
Architectures

The BIAN Service Landscape (which refers collectively to the high level BIAN
reference framework, Service Domain and service operation specifications) is a
business architecture. It can be positioned as a bridging mechanism linking an
enterprise’s overall business strategy and associated business model to the
underlying implementation level technical solution specifications. This positioning is
shown with some broader explanatory context in the next figure:

Page 54 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

WHY: The Enterprise Business Model

Defines the commercial purpose of the enterprise. This includes strategic
objectives and the underlying business model.

BIAN WHAT: The Business Architecture
Service Domain BIAN Service Domains define a bridging Business Architecture. Upwards the
View Service Domains can be mapped to the enterprise business model tieing their

performance to the realization of strategic business goals and objectives.

o Downwards Service Domains map to supporting systems. Their objects and
Z functional patterns defining high level business requirements. The designs are
K implementation agnostic, their interpretation varies depending on the target
technical architecture. Other models views are required to complete the design

HOW: Implementation Designs — The specification of the capability partitions defined by Service
Domains is augmented with more conventional data model views and process views. The way these different
views combine to provide a coherent implementation design varies for different technical architectures

The Data Model View The Process Model View
. IS aiceie | Accent can be applied both at a macro (between
e.g. address of a customer SDs) and a micro (within a SD) levels

related to the object’s properties/features, .
« the state of its handling i.e. order progress » defines the execution flow of actions, and
details « the action’s input and output parameters

‘
+ standard reference information, e.g. _ - can also highlight processsing exceptions

Country Codes

Figure 26: BIAN - the link between business and technical architectures

The BIAN Service Domain represents a business functional capacity partition that
combines people, procedures and supporting systems. As mentioned, BIAN’s focus
is on the definition of the technology-enabled aspects of a Service Domain’s
operation and the service interactions between Service Domains. The connection to
the supporting systems solutions is made by relating the high-level BIAN Service
Domain and service operation specifications to supporting systems designs. These
(typically more detailed) supporting systems specifications can be captured in many
different forms. Furthermore different model views are appropriate for different types
of technical environment.

Considerations for the connection between BIAN and the underlying systems
architectures are covered here in three ways:

1. How may the high level BIAN specifications be extended?
2. How are the Service Domain boundaries mapped to applications?
3. Relating information and data to service based design.

The following frequently used terms are defined for their use in this guide:

e Business Model — defines the commercial rationale for an enterprise — for
example its performance goals, market segmentation, bases of differentiation,
product and service coverage and organizational structure

e Business Architecture — one or more model views of business activity that
can be used to structure and optimize the enterprise’s functioning and to

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 55 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

specify the requirements for supporting resources such as personnel,
buildings and equipment and information technology

e Business Requirements — different model views of intended business
behavior in a format and level of detail needed to define implementation
requirements for supporting resources — information technology in particular

e Systems Architecture — different model views of the supporting information
technologies (including application logic, data and technical environments/
platforms)

e (Business) Application — a term loosely applied to a computer program that
supports a coherent collection of business activities. A Business Application
can be an assembly of Application Modules

e (Computer) System — a term loosely applied to the combination of a
Business Application and the supporting technology infrastructure needed to
operationalize the application

e (Business) Service Operation - the term BIAN uses to refer to the external
access mechanism used to access the capabilities offered by a Service
Domain (or called by a Service Domain for it to delegate/gain access to
another Service Domain). Note that this is a more constrained definition than
sometimes associated with this term.

4.1.1 Extending the detail of the BIAN specification

With the BIAN Semantic API initiative and the associated development of the BIAN
BOM BIAN adds another level of design specification to the Service Domains and
their service operations across the Service Landscape. Examples of this additional
detail are included in the latest release as noted earlier.

The finer detail is achieved by breaking down the functional pattern behaviors into
finer grained elements called ‘behavior qualifiers’. The approach is more fully outlined
in the How to Guide — Developing Content. In this section some of the main aspects
and implications are summarized.:

Functionality — the BIAN Service Domain role description, control record
definition and operational states provide a limited outline of the business
functionality of the Service Domain. In practice it has been found that it is often
necessary to augment the BIAN specification with checklists of the main
prevailing functional and non-functional features. The features clarify the role
and can help relate the Service Domains to business systems. In the past
simple feature checklists have been developed and though these checklists
are not part of the formal BIAN standard - they can provide informal
definitional clarity by example. Service Domain feature checklists are
described in more detail in the How-to — Applying the BIAN Standard.

As an alternative to these informal feature tables the extended definitions of
the Service Domains are based on breaking down the Service Domains
functional pattern into its underlying behavior qualifiers. This results in a more
structured checklist of features. The table below lists the behavior qualifier
types for each of the functional patterns. Specific behavior qualifiers need to
be defined for each Service Domain corresponding to the type matched to its
functional pattern:

Page 56 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

.) - Information Profile
Brief Definition - - Behavior ; ifi inti
Pattern Generic Artifact Definition/Description Qualifier Type Behavior Qualifier Type Description

The purpose and mission for the enterprise including its competitive A collection of goals and objectives for the enterprise and its main

DIRECT Define the strategy | Strategy positioning and bases for competing in the market Goals divisions
i Management The management and oversight while running an operational unit of an " A collection of one or more responsibilities or tasks under
MANAGE Oversee activity Plan/Charter enterprise Duties management
A collection of one or more clerical routines that are to be followed to

Administrative
{

Plan The clerical support for an operational unit/function of an enterprise Routines

ADMINISTER Administer activity administer the operational unit/function

The collection of operational serivces/functions offered by the

Operating The operation of a i facility empl ided by
operational facility

(o

Session/ Facility an enterprise
The performance of a supporting office activity within the eneterprise

(not product/service fulfillment specific) Worksteps

Aregistry of items recording key reference information and properties

relating to each

A specification of a product or service offering covering all aspects

required for its use Aspects

OPERATE Operate facility Functions

PROCESS Process work Procedure The main worsteps to be followed in th eexecution of the procedure

REGISTER Register details Directory Entry Properties The properties/reference details recorded In the registry for items

DESIGN Design solutions Specification The main design elements/views making up the overall specification

Development Adescrete or bounded effort with a defined remit and intended Acollection of one or more deliverables that may be further defined in

DEVELOP Execute projects Project purpose/outcome Deliverables terms of an approach to be followed to create them
: Aformal evaluation or test of a subject against a predefined set of Acollection of one or more tests'evaluations that can be made to
ASSESS Test compliance Assessment properties or performance criteria =2 certify a subject
oo Maintenance Aservice to provide mai and repair to 9 . .
MAINTAIN Maintain resources Agreement technology Tasks Acollection of tasks needed to support maintenance and repair work
TRACK Log events Log ﬁ;?ﬁg;srgzgé?agcssxeﬁgﬁ;’iﬁggg %(Ie:et: and if necessary Events Acollection of the events/transactions recorded by the log

i ; Aservice to apply specific types of analsis against a set of provided . Acollection of models/calculations/algoritms that can be applied to a
ANALYSE Analyse activity Analysis data related to an item or activity Algorithms subject or activity

Amechanism to track and report on the state or dynamic property of A collection of information feeds/measures that can be used to track

MONITOR Measure resources Measurement some item or activity Signals the status of one or more items/entitites
AGREE i Aservice to apply specifc laws and/or rules to define the terms and A collection of terms (within some jurisdiction) that can be selected and
TERMS Govern activity adisament conditions that govern a business service or activity VTS configured to define a contract /agreement
: h Marmharchi Aregistry of entities that qualify for membership to a group with a " b .
ENROLL Register business purpose or catergorization Clauses Acollection of clauses that govern the eligibility for membership

: Aservice to track the availability and allocate business resources (staff ; Acollection of one or more specific assignments of inventory allowing
ALLOCATE Allocate resources Allocation and/or facilities) on request Assignments for different allocation types and states

Fulfillment The fulfillment of a financial facility, including customer initiated and

Arrangement internally triggered actionsFeatures Features The product features/services available with a financical facility

FULFILL Fulfill agreement

TRANSACT Execute transactions 'Transaction The execution of a financial transaction Tasks/Steps The sub-tasks involved in the execution of the financial transaction

Figure 27: Functional Pattern and Behavior Qualifier Types

Service Operations — the core of the BIAN standard and the way the
functional partitioning is defined is through describing the service operations
offered and consumed by Service Domains. The service operations outline the
service dependency between two Service Domains, listing the information
exchanged in semantic terms. In many cases, where available, the BIAN
service operation descriptions can be mapped to one or more systems level
message definitions that can enable an application to application exchange. A
repeatable mapping approach is outlined described later in this guide.

BIAN does not define the operational nature of the service operation exchange
in any detail as this will typically vary greatly in different deployment situations.
Is it worth noting that the BIAN designs do not require a service-based
implementation. For example the boundary implied by a service operation
exchange could be realized as a ‘hard-wired’ application to application
interface when appropriate.

With the progressive addition of the BIAN BOM as BIAN extends the Service
Domain definitions across the landscape, coupled with BIAN’s Semantic API
initiative more detailed service operation specifications are being defined. As
already noted, these more detailed service operation definitions are
progressively replacing the default checklists that were included in an earlier
release

Business Information — the Service Domain control record can be used to
help define business information use and governance needs. Furthermore the
way information is partitioned in service-based designs can mitigate problems
of scope and consistency. This aspect is considered in more detail in Section
4.1.3 below.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 57 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4.1.2 Mapping BIAN Service Domains to Business Applications

The BIAN business architecture defines logical, generic, functional building blocks
that can be used to better partition, design and assemble business applications.
There is an implicit assumption that these functional building blocks will be
implemented using designs and technical solutions that exploit service oriented
architecture (SOA) techniques. But as described later in this guide the BIAN designs
can be applied in many different technical environments not necessarily limited to
service based designs. Note that a BIAN working group is currently developing the
approach for mapping BIAN to different vendor systems architectures. When this
work is complete this section of the guide is likely to be revised significantly.

The BIAN Service Domain partitions business activity in conformance with two key
considerations: one, the partition must be unique and discrete and two, the partition
must be elemental. An elemental business functional capacity partition though it may
be succinctly defined at the business architecture level can require an extremely
complex collection of underlying applications and technology. BIAN defines Service
Domains with a brief description of their business functionality and more importantly
semantic definitions of the business service operations they offer and consume.
Staring from the latest release an additional level of detail is being progressively
added across the BIAN service landscape that improves the ability to map the BIAN
specification to underlying systems solutions.

When mapping the Service Domain to a systems architecture view the functional
partitions represented by a Service Domain must be aligned in some way to the
supporting business applications. A frequent assumption is that there is a simple one
to one mapping between Service Domains and well-scoped business applications. In
practice this is rarely the case.

It is more common to find a business application that contains a large collection of
Service Domains and sometimes a Service Domain may represent a sensible
collection of multiple business applications. Furthermore there are two specific
situations where a business application or application module may recur in many
Service Domains.

The main mapping patterns are as follows.

One-to-One — the simplest is where the scope of the Service Domain aligns
precisely to the coverage of the supporting application. Possible examples
include Customer Agreement, ATM Network Operations and Product
Directory. In these cases the functionality of the Service Domain defines the
core functioning of the application and the offered and consumed service
operations match the main (service) interfaces that the application needs to
support to be integrated into the overall application portfolio.

Page 58 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Application matched
‘One 2 One’

/j = Business Application

= Service Domain

Y
SASASA

= Service Mapping

)

Figure 28: Service Domain to Business Application one to one

il
m

One-to-Many — less commonly it may be that the Service Domain defines a
business function that typically brings together a collection of business
applications. This can occur when the function exploits an array of tooling and
support that may be implemented by different specialized applications.
Possible examples include Systems Development and Product and Model
Design Service Domains. The assumption is that the constituent applications
can be assembled in a manner that is largely transparent to the outside world.
They can be contained or integrated in a way that supports a coordinated
external service boundary and any connections/dependencies between them
are fully encapsulated within the boundary of the Service Domain.

Applications
combine as elements
‘One 2 Many’

= K

= Business Application

= Service Domain

OAOA

TYTYLY

= Service Mapping

(1]
mm

Figure 29: Service Domain to Business Application one to many

Many-to-One — by far the most common mapping will be where several
Service Domains are contained within a business application. Possible
examples include the majority of Product Fulfillment applications and Contact
Center Applications. Most enterprises are familiar with the issue of redundancy

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 59 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

in the application portfolio - it is not unusual for an enterprise to have many
competing applications that perform essentially the same function as a result
of silo’ed development and business acquisition. The issue of redundancy
goes beyond this however. The typical stand-alone application contains a
significant proportion of functionality and if it were properly engineered could
be shared by multiple applications. By mapping Service Domains against
business applications it is possible to identify partitions that are truly unique to
an application and those that are candidates for shared solutions. This type of
mapping is discussed further in the context of different technical environments
later in this guide.

Application Broken Up — ‘Many 2 One’

(Breaking up monolithic host systems can
expose unsupportable service operations)

= Business Application
: : : :::::| |:I|:/I£::/I 4:] @ = Service Domain

= Service Mapping

Wikid
m

Figure 30: Service Domain to Business Application - many to one

Many-to-Many — in some cases application modules may recur in many
Service Domains as repeated utility functions. Examples of utility application
modules include financial model components and generic productivity tools.
This mapping/association is not an integral aspect of the business architecture
view. It relates specifically to the design of the supporting systems that may re-
use many utility functional elements. It is mentioned here because the ability to
identify opportunities for utility application modules and to trace their re-use
across the application portfolio is important. This can be captured as an
overlay on a BIAN business architecture representation.

Page 60 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

SW Utility Library

Applications may
integrate software
utilities

How SW utility solutions relate to Service Domains

Figure 31: Utility application module re-use

Repeated Solutions — the final mapping option is another specific to systems
implementation that can also be captured as an overlay on a BIAN business
architecture view. This is where a systems solution for one Service Domain
can be reconfigured and used to support another Service domain
independently. An example of this is a product fulfillment solution that can be
deployed to support different variations of products — a Loans solution may be
easily re-configured to support many different loan products.

A business application may be
re-configured and support many
discrete Service Domains

ey
Feczm 00 e
T —
—— ey
e ey
PR N

Common Solution

How common SW solutions relate to Service Domains

Figure 32: Configurable solution re-use

Many of the different mapping options outlined above are revisited in the section that
describes implementation in different technical environments later in this guide. To
conclude this sub-section a few key points are reiterated for clarity:

1.

BIAN adopts a service oriented paradigm to model business behavior
— for the reasons explained in Section 1 of this guide the BIAN business
architecture adopts a service based paradigm. Supporting systems
architectures may also adopt a service oriented approach but this is not

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 61 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

mandatory — the BIAN designs can be mapped to more conventional
process and monolithic architectures to provide specific insights —
examples are described later in section 4.4 of this guide

2. The BIAN Service Domain defines a logical functional capacity
partition — the partition represented by the Service Domain is a unique
and discrete business functional capacity partition. It can be thought of as a
high-level design pattern. It is quite possible that this logical design will be
repeated many times in physical deployment — examples are discussed
later in section 4.5 of this guide

3. Service Domain service operations can be mapped to different types
of systems interfaces — though the prevailing assumption is that a
Service Domain exchange as defined by a service operation will be
implemented as one or more messages in a service oriented architecture
this is not mandatory as noted above. A service operation may correspond
to a hard wired interface or in more extreme circumstances (typically for
performance reasons) may be eliminated in practice through the use of
shared database technology (typically with separate logical data views)

4. The BIAN Service Domain may support business information
governance — the BIAN Service Domain partitions may be used to resolve
business information and data governance issues. This topic is addressed
briefly next.

4.1.3 Relating Business Information to Data in Service Oriented Design

This sub-section briefly summarizes how business information and the underlying
data representations are scoped and handled in the BIAN service-based design. It is
first necessary to clarify how some terms are used here in this guide:

e Business Information — refers to business concepts and details that can be
described in simple narrative terms. Business information defines what needs
to be known to describe something or in order to outline some necessary
action.

e Semantic Vocabulary — BIAN maintains a vocabulary of key business
information terms that defines their meaning and relates them to equivalent or
similar terms in other selected industry standard vocabularies

e Business Object Model — BIAN is currently developing a business object
model that is built on and extends the industry standard ISO 20022 Business
Model. The BIAN BOM provides a detailed decomposition of the business
information governed by each Service Domain and made available through its
service operations

e Data/Data Structure — refers to a machine-readable data representation of
one or more business information terms. Note that a data view is typically far
more detailed and that there may be many competing/overlapping data
views/formats for the same business information term

¢ Information/Data Scope — defines the extent or boundary of the context for
which the definition of a business information term and/or its associated data
representation is valid/agreed.

Page 62 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

These definitions are needed to explain a useful property of the BIAN service-based
design with respect to information and data governance. In a more conventional
process view of business activity the scope of the information referenced (and any
underlying data representations) typically spans the complete end-to-end process.
Consider for example a mortgage application and fulfillment process. When the
customer first completes the application form they will provide details about
themselves, the mortgaged property and agree the payment terms and conditions
that apply. This information will be referenced and updated and transactional activity
logged through all subsequent stages of processing until the mortgage is finally
repaid. It is hard to identify any specific stages in the processing of the loan where
any aspect of the associated business information may not be needed for some
reason.

These business information requirements will be translated into more detailed data
structures and elements for the supporting mortgage loan processing business
application. As (for the sake of this example) the complete end-to-end mortgage
process is supported by one business application, the same data views of the
business information can sensibly be adopted by all users/interested parties. In
summary in conventional process based solutions the scope of the business
information tends to be broad and the mapping to the underlying data structures is
the same for all interested parties.

It is obviously very sensible to be able to support broad access to common business
information and to have widely applied data standards. However in practice this is not
always easy to achieve across application portfolios that may combine many
bespoke developments and different commercial packages. It is even more difficult to
coordinate between different enterprises. It is therefore interesting to note that these
two properties — broad scope and common data definitions/mappings can sometimes
be relaxed to some extent in service based designs.

Consider the scope of business information in service based design using the
example of the month-end credit card billing process first seen earlier in this guide. In
the example each service domain retains control over the control record instances
that handle the fulfillment of its particular business function for the full life cycle. For
example, Customer Agreements maintains the customer’s agreed terms and
conditions from start to finish. The only information exchanged with other Service
Domains is extracted reference views of the agreement (and perhaps some control
related requests).

It is possible to determine for each Service Domain what portion of the business
information that it uses to support its role needs to be externally visible and what
portion of that business information relates to specific internal processing that can be
hidden or encapsulated away from all other Service Domains. In the example of the
Customer Agreement there is a limited public view of the Customer Agreement and a
more complete array of business information needed to set-up, verify and maintain
the agreement behind the scenes.

The scope assessment of the overall business information can therefore be divided

into public business information for which the definition needs to be agreed by the
parent/owning Service Domain and all other Service Domains that may access its

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 63 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

services and the more comprehensive internal business information that only needs
to be seen/accessed by its ‘parent’ Service Domain.

Next consider the required degree of precision with which a business information
item is mapped to a representative data structure. This consideration is rarely
exposed in more conventional process based designs but is an important property of
service operation exchanges. The concept can be clarified using two examples at
either end of the specification resolution spectrum.

A Credit Card fulfillment Service Domain needs to post the transaction details for a
card transaction against the transaction journal (maintained by the Position Keeping
Service Domain). It is fairly obvious that every field (amount/date/currency/account
number etc.) needs to be strictly defined in machine readable, formatted fields.

At the other end of the range, Campaign Execution has identified a new prospect that
is not currently a bank customer and wishes to notify Prospect Management to follow
up. In this situation there are many possible ways (information items) to identify the
individual and to describe the new business prospect. Furthermore the precise data
formatting of the underlying data fields can be more loosely matched. It does not
matter if one side of the exchange happens not capture middle names or has
different address field lengths. Sufficient information can hopefully be exchanged to
have a good chance of making the business connection.

In summary there will be many service domain exchanges that require similar levels
of consistency to data scoping and formatting rigor to the more conventional process
based implementations. But there are areas of the Service Landscape where the
scoping of shared business information definition and values is reduced to a
significantly more focused ‘public’ semantic vocabulary. Also where differences in the
internal data representations of these semantic business terms in the respective
applications of the supporting Service Domains do not constrain their ability to
exchange services.

These information and data properties are a key aspect for achieving loose coupling
between service-based capabilities in highly networked technical environments such
as the world wide web, the cloud and micro-service architectures and most recently
through mechanisms such as application program interfaces (APIs).

An additional observation can be made with respect to business information
governance. The BIAN Service Domains are defined to represent non-overlapping
business capability partitions that collectively cover all possible aspects of banking.
Each Service Domain has a defined control record that represents the information
used to manage one instance of the Service Domain performing its role for a
complete life cycle. It follows that the business information associated with the
collection of one or more control records for a Service Domain (and any derived
analytical views) is also discrete and that the combination of these discrete
information partitions covers all possible business information.

As a result the Service Domains can be used to define business information
partitions that can be used to scope out business information and the underlying data

Page 64 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

governance responsibilities for the Service Domain’s supporting applications. Note
that this partitioning of the business information and its supporting data views does
not preclude that one Service Domain may require access to the data governed by
another Service Domain. This information will be accessed through appropriate
service operation exchanges and the retrieved information once interpreted as
necessary becomes information that is owned and governed locally.

It is also the case that two Service Domains may govern discrete business
information that happens to share a common data representation and even the same
current value. For example the Customer Agreement Service Domain may maintain a
name and address for a contract that has the same format and value as the mailing
address maintained by the Correspondence Service Domain. Though they may use
the same data format and even have the same value, these two data items represent
different business information as they have different contexts, meaning and purpose.

It is for the above reasons that the BIAN Business Object Model is being defined with
a structure that aligns with the Service Domain control records.

The Control Record can be modeled

The business information view of a Service Domain’s control record can be modeled
using any suitable entity or object data approach to define its structure and content.
Such a view is used to help define the information payload of a Service Domain’s
service operations. In an earlier release BIAN defined a standard collection of types
of information that might make up the content of a control record based on the
Service Domains functional pattern. This generic list provides a checklist from which
a suitable selection can be made and adapted for each individual Service Domain.

In the significant majority of cases the Service Domain’s control record defines a
single ‘primary’ object or entity with a potentially complex make-up of more detailed
elements as can be represented in a conceptual data model. In more recent releases
an additional design property has been used to specify a Service Domain — the
‘behavior qualifier type’. The behavior qualifier type indicates how the functional
pattern of a Service Domain can be broken down into finer elements. Based on this
decomposition a more detailed structure of the function and data can be derived. The
way behavior qualifiers have been defined and applied is explained in more detail in
the BIAN How To Guide — Developing Content.

In addition to the greater level of specification for the Service Domain BIAN has also
started to define a Business Object Model, that builds on and extends the 1ISO20022
Business Model industry standard. The BIAN BOM aligns to the Service Domain
control records and provides a significantly greater level of specification of the
associated business information than available in previous releases. The BIAN BOM
is being be expanded to cover the BIAN Service Landscape in conjunction with the
ongoing BIAN API initiative.

For some Service Domains the underlying information model can have a more

complex structure than others. This is particularly the case where the Service
Domain handles asset types that include some form of relational/hierarchical

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 65 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

property. Examples of Service Domains that have an embedded hierarchical property
are:

1) Service Domains for a legal party (a legal entity can be made of other legal
entities

2) Service Domains for a product (a product can be an assembly of other
products)

3) Service Domains for Risk Management Service (risks can be composite views
of other risks).

Service Domains with a hierarchical structure require additional service operations to
manage the internal hierarchical relationships. For example in the case of the legal
party there is one service operation to add a new party and then an additional service
to add a new party relationship.

4.2 Clustering Service Domains

BIAN defines a cluster to be a simple mechanism for grouping together Service
Domains so that they can be viewed as a related collection in some form of
representative structure. This grouping may represent either business model
perspective to represent a ‘segment’ as defined by TOGAF to be a business unit,
profit/cost center, division or enterprise. Or grouping for systems purposes for
example to represent the scope of a business application. Though BIAN is actively
looking as mapping BIAN to business model views the clustering concept has yet to
be applied in great detail.

BIAN guidelines for applying clustering for systems purposes define Service Domain
groupings that map to the underlying business/systems application architecture. The
cluster can be a form of wireframe with some additional structure and definition
needed to better relate to the business application.

Known service connections between Service Domains, based on First Order
Interactions described earlier in this guide provide good initial insights into the likely
range of interactions between selected Service Domains. When a selection of
Service Domains is defined to generate a cluster the service operation dependencies
can be used to define the external service boundary of that cluster/application.

The key difference between a cluster view and the standard wireframe is that the
cluster view takes into account scoping considerations for Service Domains that
apply when the conceptual/logical designs of the Service Domains are translated into
the more physical implementation designs. In particular the standard wireframe only
allows a single copy of any Service Domain. In implementation there are often
practical reasons for duplicating Service Domains across multiple physical
applications.

There are two levels at which this duplication can be considered. At the highest level
there may be duplication business operations, for example customer contact centers
may be deployed in different regions. More relevant to the clustering concept is the
lower level type of duplication where a Service Domain is needed in more than one

Page 66 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

business application typically for performance and integration purposes. Three roles
have been defined to recognize this possible need to duplicate a Service Domain in
implementation across the application portfolio. The roles are:

Core — The Service Domain’s implementation exists only in whatever
business application this cluster represents. Any and all service-based
references to this Service Domain must be supported by the external service
boundary of the cluster/application. (As must all of its delegated service
operation dependencies). For example the Service Domain Current Account
Fulfillment would be a core Service Domain in the Current Account Processing
Application cluster...

Proxy - Represents a capability that is likely to be repeated in other clusters,
and is included in the cluster to provide a local 'view'. In such a case it could
be the master version meaning all other instances need to reference this
instance for their needs (as with the Core role), or it could be a slave, meaning
it needs to synchronize with the master instance elsewhere through suitable
'‘background' services. For example Service Domain Party Data Management
could be a slave proxy service domain in the Current Account Processing
Application cluster.

Utility — Like the proxy Service Domain role, the application cluster contains a
non-unique instance. But in the case the local instance operates in a fully
standalone manner - it does not need to synchronize or even be aware of
other similar SD instances elsewhere. For example Position Keeping (the
transaction journal) is a utility Service Domain instance in the Current Account
Processing Application cluster

The figure below is an informal example of a cluster of service domains for a retail
banking application showing the different roles within the cluster the and main
external service dependencies:

A
@
<

£
)i

i @

Service
Domain

Service
Domain

B B

Cluster showing Core/Utility/Proxy Roles

Core = Service Domain wholly

contained within cluster
Customer

Interaction

Proxy = Local instance
synchronised with master

Utility = Local instance, no
need to synchronise

External = First order service
operation connections

Peripheral = Second order
dependencies - for reference

Figure 33: Example Cluster for a Retail Banking Application

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 67 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4.3 Mapping BIAN to Other Industry Standards (e.g. IFX, 1ISO20022)

An earlier ‘Capstone’ Project with Carnegie Melon University supported by PNC Bank
and BIAN developed a repeatable approach for mapping BIAN service operations to
the message specifications in IFX and 1ISO 20022. The findings are fully document in
a report (BIAN_CMU_Final_Report.pdf) that is available on the BIAN website
(www.BIAN.org). This work built on an earlier joint project between BIAN and IFX that
explored the ability to map BIAN service operations to implementation level message
standards. This report (BIAN-IFX-PoC-Webinar-Dec-2013-Final.pdf), is also available
on www.BIAN.org).

Both initiatives followed a similar general approach to mapping messages to the
BIAN service operations. This used the standard design structure of the Service
Domain and its associated control record to narrow in on possible matches. In the
CMU initiative the standard service operation ‘action terms’ were also used (these
were not available for the earlier exercise). The main steps in a repeatable mapping
approach (that combines both efforts) are described below. Note it may help to refer
back the descriptions of Service Domains and service operations earlier in this guide
to fully understand the explanation:

e Business Scenario Selection — a suitable collection of BIAN Business
Scenarios is used to agree the business context for the mapping. From the
Business Scenario views the target Service Domains and their associated
service operations are isolated

e Service Domains and their Control Records are identified — for each
involved Service Domain, the associated control record is used to identify the
primary asset type/entity acted on by the Service Domain

e Asset Type Aligned Message Selection — Candidate messages are selected
from the target message standard based on matching the primary asset type
to their data/object model. In general terms standards such as IFX often define
and categorize messages that provide access to data views of major business
objects. An example object would be a customer (relationship)

e Functional Pattern Based Filtering — the second facet of a Service Domain’s
control record is its ‘functional pattern’. This can be used to further filter the
selected messages and/or message content based on a sub-set data view of
the asset type. Continuing with the example of the customer relationship,

BIAN defines a Service Domain that applies a functional pattern ‘Agree Terms’
to the customer relationship. This can be used to narrow the customer
relationship messages and details of interest to just those associated with their
contract

e Mapping Action Terms to Matched Messages — BIAN service operations
use one of a predefined list of action terms. These action terms can align to
the types of messages in the target standard

e Matching Message Payload — the final step uses the semantic content
descriptions of the BIAN service operations and matches this with the payload

Page 68 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

http://www.bian.org/

BIAN How-to Guide Design Principles & Techniques V7.0

of the candidate messages to further filter out messages and message
content.

The steps described above may be applied in different combinations depending on
the target message standard being mapped. Practical experience to date has
confirmed that the semantic descriptions of the BIAN service operations are
adequate to support a fairly rigorous mapping to established message standards.

The extended Service Domain specification with behavior qualifiers provide
additional detail to support message mapping that could be factored into the above
approach. This aspect is being considered as an aspect of the ongoing BIAN
Semantic API initiative and any findings will be included in future versions of this
guide.

4.4 Other Mapping Considerations

BIAN currently maintains a comprehensive UML metamodel of its designs. This is an
extension of the established 1ISO20022 metamodel. The BIAN metamodel is fully
documented in the BIAN MetaModel guide that is available on www.BIAN.org . The
BIAN model is maintained in a UML based repository that allows members to
download the content into their own tooling environments with limited adaptations.

BIAN’s policy is to align with prevailing industry standards where possible in order to
avoid creating duplicate/competing definitions. This includes adopting naming
conventions/notations and aligning with the most popular tooling when this is
possible. Where there are competing standards BIAN will attempt to reconcile or at
least document incompatibilities’.

BIAN is currently evaluating the following standards and supporting
tooling/techniques to improve alignment:

e Open Notations: Archemate & possibly SoaML
e Open reference models: TOGAF, SOA, RefArch, BIZBOK
e Vocabularies/Ontologies: 1ISO20022, OMG/FIBO.

Others may be added to the list based on the recommendation of BIAN members.

4.5 Applying BIAN Designs in Technical Environments

The BIAN standard is intended to be implementation agnostic. To be of practical
value there need to be repeatable approaches for interpreting the BIAN designs in
the main prevailing technical environments found in the banking industry. More
detailed guidelines for the concepts outlined in this section can be found in the third
document of the BIAN ‘How-to Guide - Applying the BIAN Standard.’

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 69 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4.6 Translating BIAN ‘down the stack’

Before briefly considering three specific different technical environments there are
some general comments as to how the BIAN high level conceptual designs can be
interpreted ‘down the stack’ for the supporting application and infrastructure levels. A
Proof of Concept Initiative was recently completed within BIAN that sought to explain
and enhance the mapping from BIAN to the traditional architectural views (business,
application, information and technology). The result of this work is presented in a
summary report that can be found on the BIAN website. Its findings and
recommendations will be reflected as appropriate in later versions of this guide.

4.6.1 Translating at the Application Level

In section 4.1.2 above there is a detailed list of the different ways a BIAN Service
Domain partition can map to the underlying business applications and their
constituent application modules. Points of clarification to add here are:

e A BIAN Service Domain may align to a single business application, several
Service Domains may be covered by a business application or a single
Service Domain may be supported by a collection of business applications

e Itis more likely that at some level an application module within a business
application will align most closely to a Service Domain

e |tis not necessary that the mapped business application or application
modules be implemented with a service enabled external interface. The
exchanges can be realized by many types of technical exchange
mechanism.

The main purpose of the Service Domain is to define a logical business functional
capacity partition that can be used as pattern to better structure the application logic
to avoid fragmentation and duplication and improve encapsulation. Some examples
of the way the Service Domain concept can be leveraged at the application level
include:

e Specialization — because the Service Domain supports one ‘elemental’
purpose its implementation can be optimized for that specific behavior.
Conversely more complex designs that support multiple behaviors are
often forced to adopt technical and operational compromises

e Externalization & Re-use — The Service Domain design partitions make it
clear when actions should be delegated to other specialized Service
Domains (‘Externalized’) — allowing the Service Domain to focus on its own
specific role and for greater re-use of functionality between Service
Domains. This important concept is explained in more detail with examples
later in this Section

e Service Enablement — though it is not required it is anticipated that the
Service Domains are typically implemented to act as service centers in a
service oriented architecture (SOA). The many advantages of SOA are well
documented elsewhere

e Loose Coupling and Multi-Threaded — features typically associated with
SOA, the Service Domain partitions are well suited to an implementation

Page 70 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

where the required collaborations between service domains are fully
asynchronous and defensive (i.e. handle delayed/erroneous responses).
Also where the Service Domain is able to handle multiple concurrent
streams of activity.

e Encapsulation — because the Service Domains business role is discrete
and it performs its role from start to finish for every occurrence the partition
tends to ‘encapsulate’ business information and logic. The Service Domain
can ‘hide’ complexity that is not relevant to those that consume its services.
This property is particularly useful for highly distributed environments like
the cloud

There is much about the BIAN Service Domain that aligns to the design principles
associated with a micro-service architecture. This topic is explored in detail in the
BIAN Semantic APl How to Guide. Finally because the business role addressed by a
Service Domain is enduring (see Section 2.1) it is often possible to build out and
integrate the capabilities of a Service Domain incrementally. It may also be able to
add new features as new practices evolve without destabilizing established services,
extending the shelf-life of business applications significantly.

4.6.2 Translating at the Infrastructure Level

A Service Domain and its mapped application module(s) can be further related to the
supporting technical infrastructure. For simplicity in the explanations that follow it
assumed that a single application module has been mapped to the associated
Service Domain.

Each Service Domain will have its own non-functional profile in terms of its data
storage access and processing requirements that need to be supported by the
technical infrastructure. Most technologies provide comprehensive instance
partitioning facilities/virtual machines so multiple Service Domains and their
associated application modules can operate independently on the same platform
allowing for Service Domains/application modules with similar operating profiles to be
supported on shared technical infrastructures with the required performance profile.

Some optimization options can be considered for supporting the communications
traffic between application modules as represented by the high level Service Domain
service operations. Where the volume and frequency of the exchanges is modest
most data exchange/communications mechanisms can be considered as is
appropriate for the particular technical environment.

Where the exchange is high volume/high frequency it is possible to configure the
infrastructure to facilitate the exchange. For example the logical service exchange
between two discrete conceptual functions as represented by Service Domains can
be mapped to a shared database with each having controlled access to their
respective views of the data. In practice this would eliminate the need for a physical
service based data exchange to realize the conceptual service interaction. Other
technical communications options may be found.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 71 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4.6.3 Translating Summary

The mapping of Service Domain conceptual designs down the stack is summarized
in the next figure:

“Value Chain’ viehw of Service Domains At the Business Layer Service Domains define
t R . .

(Schematic) discrete operational partitions:

¢ unique, discrete-business capability partitions

act as operational service centers

¢ business performance related directly to
business needs and priorities

=E=EE

At the Application Layer, requirements map to
\\ serviee . Tlf;;zﬁ;%rgs major application modules:
Domains P “stack” & Service Domains align to major application
modules
. & business information needs mapped to data use
Business . q :
Layer > & operational services mapped to A2A messaging/
interfaces
Ap’ila'sztr'on —_ & orchestration related to different solution
architectures
Communications = At the Communications & Infrastructure Layer,
Platform/ — R H i
Infrastructure | applications map to supporting platforms
¢ Communications technology
In most systems environments the assessment and planning :
performed at the top layer can be related to the underlying ¢ Processing centers
applications and technology layers # Data storage

Figure 34: Mapping Service Domains down the stack

4.7 Applying Service Domains in Different Technical Environments

The Service Domain mapping approach is outlined for three general technical
environments. But before describing these it helps to consider two discrete aspects
of the Service Domain specification as these aspects play different roles in different
technical situations. A Service Domain can be considered as the combination of its
functional ‘core’ and a service boundary or ‘wrapper’ that handles the orchestration of
the service based connections with other Service Domains as represented below:

Page 72 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Differentiating between the core
functions and the service ‘boundary’

Core Functions
& Logic
Core Data

Service Domain
Mechanics

)

Full

S99IAI9S
paJtaljo

Service Operation
Orchestration
(Pattern)

)
Control Record :@

Lifecycle
Instances

—
NE)

Figure 35: Service Domain split into two key components

J(

State
Management

v

4

S99IAIOS
pPaWNSU0)

(

The functional core contains the internal processing logic of the Service Domain,
needed to fulfill its offered services. BIAN does not attempt to fully define the internal
working of Service Domains so the description of this functionality is limited.

A simple table is sometimes used to capture prevailing functional and non-functional
features for a Service Domain as described in more detail in the third document of
the How-to Guide — Applying the Standard. These tables are not part of the formal
standard but as with Business Scenarios they help with the correct interpretation of
the standard by providing examples and context. Service Domain Feature tables can
be developed and used to define requirements and to map and compare application
options. In the latest release the definition of the Service Domain functionality has
been extended with the introduction of ‘behavior qualifiers’ as described earlier and in
more detail in the How to Guide — Developing Content.

The way the Service Domain specifications can be interpreted for systems solution
development is considered for three different technical implementation environments:

e Conventional (legacy/core) system rationalization
e Host renewal/ESB integration and application/system assembly
e Loose coupled distributed/cloud and micro-service solutions.

It is likely that all three technical environments and maybe ‘hybrid’ variants will exist
in combinations in many of the larger banks today.

4.7.1 Type 1 - Conventional (legacy/core) system rationalization

The BIAN Service Domain standard partitions can be used to assess, realign and
repurpose the transactional mainframe based host systems. The BIAN Service
Domains define non-overlapping functional partitions and the required
connections/interfaces between them. The Service Domains’ specifications can be

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 73 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

used to create a framework that is then used to assess the coverage of host
systems.

The functional footprint’ of the hosts systems can be overlain on the Service Domain
framework by matching their functional coverage. The Service Domain Feature
tables mentioned earlier can provide a simple checklist to help with this exercise as
can the more recently added behavior qualifiers where they are available. Because
the Service Domains define discrete, non-overlapping functional partitions, the core
system mapping quickly reveals gaps, redundancy and misalignment (where a
system suited to one purpose is over-extended to support other purposes) in the
overall application portfolio, as shown in the figure below.

Duplication Gaps Misalignment
Vs

Without a framework, systems comparisons are
complicated by the different scope of applications

Bounded Service
Domain
Capabilities

With the boundaries of the framework, the When all applications are mapped across the
assessments are “like for like” organization shortfalls are exposed

Figure 36: Using Service Domain partitions to do comparisons

When competing host applications/systems are compared using the Service Domain
framework it is possible to do a more structured ‘like for like’ comparison by
considering their respective coverage one Service Domain at a time. The framework
is useful for getting a ‘big picture’ view of the application portfolio. It is used to
rationalize duplicated capabilities — a situation that is common in enterprises where
there has been siloed development and/or many company acquisitions over the
years.

The individual Service Domain partitions can then be used to define these overlaps in
more detail to help identify and eliminate fragmentation of the functionality and data
within the application portfolio. Consider the example of multiple product fulfillment
business applications — a consumer banking application, a credit card fulfillment
application and a mortgage processing application.

Assume that these product fulfilment applications have been implemented

independently and currently operate largely as stand-alone operational capabilities.
As a result there will significant functional duplication such as customer reference

Page 74 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

information, customer access and servicing capabilities and customer transaction
and accounting records.

At this stage the focus of the assessment is to determine to what extent this
duplication of function and data leads to fragmentation and consistency problems
(solution re-use is considered later). The assessment is performed for each Service
Domain in isolation, considering all ‘mapped’ business applications — the three
product applications listed above for this simple example. The impact can be
assessed for the two key facets (function and data) as follows:

e Duplicated Functionality — to what extent will the user or customer
experience different functionality when it would be expected/preferred that
the experience should be identical or similar. If in this example a customer
has all three products, how awkward is the experience of accessing each
through a different application interface? Are there obvious synergies in
terms of common or shared actions that could be exploited?

e Duplicated Business Information/Data — to what extent is the same
business information/data duplicated across all business applications
leading to problems of consistency and synchronization. If a customer
changes their address on one application will it get reported to the others?

The point of these assessments is to determine the extent to which the duplicated
functionality and data needs to be ‘synchronized’ in order to maintain the integrity of
the overall business operation. These simple examples are only intended to clarify
the basic concepts for using Service Domains to assess and rationalize existing
applications. More detailed examples and approaches can be found in the third guide
of the series: How-to Guide — Applying the Standard.

4.7.2 Type 2 — Host renewal/ESB integration and application/system
assembly

The second technical environment considered here builds on the insights gained
from mapping existing host systems to the Service Domain framework. Moving on
from identifying where duplicated data and function needs to be synchronized this
second environment is geared to developing common or shared solutions that
eliminate the duplication altogether. This approach is referred to as ‘externalization’
within BIAN. The main stages in the externalization procedure is shown in the
following figure: At a finer level of detail the mapping can be used to identify the
opportunity to externalize capabilities matched to Service Domains that are built into
standalone systems, but which could be shared by multiple applications. The concept
of externalization is shown schematically in the figure below:

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 75 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

[Venagemen]
Consumer Loans Consumer Lo
=1 %’ g Customer Transactions = éljg Customer Transactions 5
— — =9 Offer . n'% ~ §1
= == Q5 Management 88 -1
, 53 : g
g
Product Usage Scenal Scheduled Workflow 9 Scheduled Workflow
C
Loan
3 Fulfillment

Service Domain

Mechanics Service Utilities

— In this simple
Customer onFie example 8 of 9
— s ki ‘modules’ are
action File —. S >
externalized

Service Enable

Modularize Externalize
Break monolithic functionality
into re-usable (Service Domain)

Replace the internal Create generic
capability with an external service interfaces for

modules service (or proxy) operational re-use

Legacy Alignment — Externalizing a stand-alone business application
Figure 37: The stages of externalization

The above figure includes an informal systems architecture view of a stand-alone
loan fulfillment application. A loan on-boarding Business Scenario has been used to
identify some Service Domains and position them within the systems architecture. A
more comprehensive collection of Business Scenarios would be needed to identify all
of the major components but this sample is sufficient for the purpose of this example.

Offer
anageme!

Consumer Loans
Consumer Loans

Customer Transactions

Offer . “

Management

Customer Transactions

Offer
Management
Scheduled Workflow 7
S £ onsumer
S oo @
Loan Fulfillmen
Fulfillment

Contact
Dialogue

S90IAIOS
uoionpoid

Contact
Dialogue
uonanpoid

Scheduled Workflow

Buney upain
Jswojsny

Service Utilities

Document Correspon-
Services dence

Customer
Interface

abeiano)
jonpoud
Jawojsn)
Customer
Interface

Service Utilities
- - 8 0of9
aster ustomer
i ‘modules’ are

Services dence
File File
candidates for

Customer 5
File Trans Product Part

q q g DESigN q J i i
action File \ 5 externalization
Party Profile

Figure 38: More detail of Loan externalization

In the right-hand view the Service Domains have been classified as being one of two
flavors: do they offer functionality that could sensibly be used in another business
application? Or are they likely to be used in only this particular business application.
Not surprisingly the majority (eight of nine in this example) fall under the first
category. As a result the functionality represented by these Service Domains is a

BIAN

Page 76 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany

BIAN How-to Guide Design Principles & Techniques V7.0

candidate for being externalized. In other terms they could be supported in some way
by a common/shared solution. In this case we assume this sharing is achieved
through service enablement.

The source of the common/shared solution could be selected from the existing host
systems if it is possible to isolate and service enable that specific partition of its
functionality. Alternatively a new solution can be acquired or developed and
progressively integrated across the application portfolio by shutting down the existing
internal solution partitions and adopting/embedding the replacement shared service
enabled solution. The approach is described in more detail in the third guide of the
series — How-to Guide — Applying the Standard.

In the simple stand-alone loans application example the significant majority of the
Service Domain partitions were externalization candidates. Observations to date are
that this is also the case rather than the exception for a significant portion of
production business applications. Accordingly there is an opportunity to achieve
significant operational efficiencies and simplification through well architected and
implemented operational capability re-use. One way to realize this is through the
implementation of an enterprise service bus (ESB).

4.7.3 Configuring an Enterprise Service Bus (ESB)

As just described using the Service Domain framework as a guide, host systems can
be broken into service enabled application modules. A technical mechanism that can
then be implemented to support service based access to these shared service
enabled capabilities is the enterprise service bus (ESB).

BIAN Service Domains define a comprehensive and non-overlapping collection of the
required business functional capacity partitions for any bank and each Service
Domain has its own unique collection of offered service operations. As a result the
combination of selected Service Domains and their service operations can be used to
define the service directory for a bank’s ESB. The host systems can be mapped to
the ESB offering service based access to their functionality and resolving
duplications as outlined earlier. These ESB enabled services can then be assembled
to support different business applications.

The different techniques and mitigation approaches for service enabling host
systems and the way applications can be assembled in an ESB enabled environment
are explored in more detail in the How-to Guide — Applying the Standard.

The ESB systems architecture is shown the following simplified schematic:

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 77 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Logical Business Applications
are assembled from collections
of Service Domains and their
Representing Service Domains as a service operation interactions
simple form with a core function and their
called and offered services:

The Service Domains and
service operations define a
‘canonical’ non-overlapping
service directory

ervice Domain

%é%& Core Host Systems

Services Function i are mapped to
the Service
Domains’
service
operatons

The collection of Service Domains define a ‘library’ to organize host services

Figure 39: ESB based application assembly

The ESB approach can be used to migrate progressively towards a business
application configuration where each operational service is offered by a single source
and re-used whenever needed across the overall application portfolio. Such an
arrangement would, in theory at least, eliminate operational duplication and maximize
business functional capacity re-use.

4.7.4 Type 3 - Loose coupled distributed/Cloud systems

Highly distributed and networked technical environments such as the Internet, the
cloud and more recently micro-service architectures provide powerful implementation
options for interpreting the BIAN designs. The BIAN Service Domains can be used to
define service enabled business functionality that can be accessed over the network.
Business applications can then be assembled using combinations of these service
centers in a manner similar to the previous ESB example. In this case the service-
enabled host systems acting behind the scenes through the ESB are replaced by
service providers available over the network. In some technical solutions these
services are implemented as ‘containers’.

Business applications/systems assembled in these networked/distributed/container
based service environments ideally need to be ‘loose coupled’ (fully asynchronous)
and defensive (i.e. deal with unsolicited, delayed and erroneous responses). They
are likely to use message queue and state management and triggering mechanisms
in their implementation. Some example system architectural features are outlined in
the third guide of the series: How-to Guide — Applying the Standard.

The way the BIAN Service Domain partitions can be matched to a highly distributed

Internet, cloud or micro-service/container based technical environment is
summarized in the following schematic:

Page 78 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Core Functions]
&Logic

—

Exposing two

discrete

elements:

& internal
processing

& external service
orchestration

|Core Function < e
&Logic adeian

Core Fun(_:tmns Oﬁeration] :
& Logic Orchestration
(Functional Pattern) I ,
< R

Containers Queue/Event Driven Network/Cloud/Microsvs
Encapsulates business Writing to queues triggers Solutions suited to loose

function and interacts asynchronous/defensive coupled and cellular/container
through external services execution based architectures

Highly distributed platforms — Loose-coupled queue based interactions

Figure 40: Cloud based deployment environment

The requirements and implications of service oriented application design for business
information and data scoping and precision outlined earlier in Section 4.1.3. of this
guide are of particular significance in this distributed environment. It is to be expected
that different service centers will reside on different technical platforms with their own
data interpretations of the business information exchanged through services.

Note that the service exchanges that are defined in semantic terms can combine
physical movements of resources, free-form conversational dialogues but will also
typically include some portion of machine representable data. A service exchange
may also be implemented as a simple one or two way transfer or may involve a
complex negotiation/dialogue. For the machine representable content it is necessary
to translate the high level semantic service descriptions into a more detailed
collection one or more data messages.

In more conventional technical environments, the application-to-application service
exchange is typically driven down to the data and communication infrastructure
where machine-to-machine message based interfaces are realized. The message
data payload needs to conform to a commonly accepted data format/convention for
these exchanges to work. This can be a significant design overhead that requires
that all data fields conform to a common schema that can be consistently interpreted
at the machine level.

In highly distributed environments the exchanges are initially resolved at the
semantic level — agreeing in general narrative terms the required business
participation and service dependencies. From there the appropriate level of precision
needed for the correct interpretation of these services exchanges needs to be
determined. The level of data precision and definitional alignment in the exchanged
machine messages will vary for different types of service exchanges.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 79 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

For the exchange of financial transaction details it can be anticipated that the
required level of precision will be very high (both parties will need to share common
data element specifications). But there are some exchanges, typically in areas that
are less transactional and more to do with business and relationship development
where such a high level of precision is not necessary for the service exchange to
work. The involved parties can agree the meaning of information items at the
semantic level and then their own internal data representation can be different. This
looser, ‘semantic level coupling’ is shown in the following schematic.

SD - SD - SD -
Service Service Market Product Product
Research Design Fulfillment

Domain Domain)
(SD) (SD) Semantic Shard
In highly distributed of Torme. :
Business » n of Terms
Layer . environments all
information is Common Shared Datal
Application | exchanged through Schema S Schema
Layer business services
inati Shared mmon
Communications = Actual Data Commor
Platform/ Values Vocabulary
Infrastructure
In conventional technology the Determining the required ‘precision’ for the
semantic interactions are translated exhanged business information is key. Some
‘down the stack’ for A2A exchanges exchanges only require semantic alignment

Figure 41: In the cloud communication can be semantic

For example, both parties can agree on the definition of the term ‘prospect’ as being
‘an individual that has expressed an interest in doing business’. This may then be
referenced in any service exchanges between the parties. How each uniquely
identifies the prospect and what specific information they might maintain etc. can be
handled independently within their respective machine environments.

Commercially available cloud based banking solutions are widely used in CRM and
risk management. The operational behaviors enabled by the technology are
particularly well suited to the networked/collaborative nature of the operational
activities in these areas. The BIAN standard can support standard solution designs
that will improve re-deployment and integration activities for cloud based offerings
and other highly distributed platforms and approaches including open API
development and more recently micro-services.

Furthermore as noted earlier, due to the way Service Domains are designed they
tend to encapsulate business information and logic. This can further reduce the
complexity of the services to containing only business information and data that is
commonly defined or necessarily externally visible. More complex business
information and logic that is unique to the role/working of the Service Domain can
remain hidden.

4.7.5 Using BIAN Service Domain partitions to define API’s

Page 80 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

In the past BIAN published a white paper that describes how BIAN Service Domains
provide a template for defining and managing Cloud based services. This can include
providing application program interface (API) based access to these services. The
white paper can be found at www.BIAN.org. With this release BIAN has developed
extensions to the designs and sample API specifications for selected service
domains as part of a broader BIAN API initiative. The BIAN APIs are available
through an open source portal and BIAN will add content and detail to this portal as
the API initiative extends to additional Service Domains across the landscape.

A key consideration explained in the earlier white paper still applies for API design
however. It addresses how access to the services can be controlled. Many banks are
looking ways to move beyond offering ‘packaged’ products and services to their
customers to providing direct access to banking facilities. This would allow customers
and third parties to integrate the bank directly into their operations somehow. Banks
wanting to provide external access to their capabilities need to find a way to do this in
a secure manner.

Achieving adequate security spans many levels, including the platform and
application access controls (IAAS/PAAS) that are complex but for which solutions
and approaches are already available or are rapidly emerging. The aspect that BIAN
can provide help with is in defining the allowed use of offered services.

When a Bank enables service-based access to facilities internally (inside the bank) it
can ensure that the services are being used for appropriate purposes and by people
with the correct access authority. When the service is accessed externally, this is far
harder to manage. Banks needs some way to ensure the services are used
appropriately and do this in a way where every external service access agreement
does not need to be specified and implemented individually.

One way to do this is to use the role of the Service Domain to define the service
access context and use this to control its use. The figure below shows an example
for a service call to access customer details using the Relationship Management
Service Domain to provide the context.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 81 of 87

http://www.bian.org/

BIAN How-to Guide Design Principles & Techniques V7.0

Application Layer

3rd Party
development
environment

The Service Domain API

$S9998 9IAIDS
painbljuos-aid
Pre-configured
service access

e) container could for example
Any business application can be The API specification uses M be the Relationship
defined as a collection of Service Domain ‘containers’ with I\/Ianag ement Service
collaborating Service Domains predefined service access capabilities

Domain. This container
would support constrained

E
S access to customer
B information and product

x - details that would be
appropriate for the

Host systems relationship manager role
support application
assembly through
services offered by
the ESB

Figure 42: Cloud based service access control

The offered service API could be bundled in a software container with the pre-
enabled constrained access to services allowing the external user to then develop
their own logic within the container.

4.7.6 Combining Types 1-3 — Most banks have elements of all three

As noted it will be the case in most large banks that their existing application and
systems portfolio includes legacy solutions spanning all three types. One additional
advantage of adopting the BIAN Service Landscape is that it makes it easier to
engineer solutions that combine systems across these environments.

A good example combines wrapped host systems that are accessed through an ESB
with external cloud based services. A customer management application may use
such a configuration to combine access to internal product fulfilment systems and
external cloud based CRM functions.

Page 82 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

Logical Business @

Applications can be
assembled from a
combination of host and
cloud based services

Service Domain Service Domain Service Domain Service Domain Service Domain Service Domain Service Domain

E rvice Dor
BEEEREE
Host A < Cloud based

Systems are services can be
wrapped for offered through
the ESB the ESB

Figure 43: Client-server BIAN design

4.8 Defining an Enterprise Blueprint for Business & Technical
Analysis

A different deployment context for the BIAN designs leverages properties of the BIAN
Service Domain to assemble an enterprise ‘blueprint’ that is useful to perform a wide
range of business and technical analyses. As described earlier in this document, the
BIAN Service domain models a business capability partition and the business
purpose or role that is enduring. The way a Service Domain works or achieves its
purpose can change as practices and enabling solutions evolve but its core business
purpose does not change. Furthermore, each service domain represents a
discrete/non-overlapping business capability partition and it is assumed that all
service domains have or will be identified to cover all possible banking activity.

As a result, it is possible to assemble a representative map or ‘blueprint’ of an
enterprise using BIAN Service Domains as the elemental building blocks. As long as
the scope or structure of the business does not change (e.g. by entering new
markets or opening in new locations) the blueprint itself should not change. The
blueprint can therefore provide a stable framework supporting many types of
analysis.

The approach for developing a blueprint and examples of the types of analyses are
covered in more detail in the third document of the BIAN ‘How-to Guide - Applying
the BIAN Standard.” The concepts are outlined here in three sub-sections:

1. the steps in creating a blueprint

2. the types of analysis
3. linking between business & technical assessments.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 83 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

4.8.1 Creating an Enterprise Blueprint

The procedure for assembling an enterprise blueprint can be performed to reflect
current or future state — in most cases defining the future state is most useful. The
three steps are outlined in the figure below:

Step 1 - Filter Step 2 — Specialize Step 3 - Organize
Select the required Service Domains Specialise/adapt Service Domains to Repeat structures to match the lines of
(note the ‘value chain’ structure shown is the enterprise (refine, repeat, combine) business and the reporting hierarchy of
explained elsewhere in the How To Guide) the enterprise
= SIS
%
=
= =
EBEEEEE=EEE

Figure 44: Three stage process for defining a blueprint

The BIAN Service Landscape is intended to contain the range of Service Domains
needed to support any bank. In the first step the scope of activities is used to filter out
any Service Domains that are not needed, for example because they support
products, services or channels that are not used in the target bank.

In the second step it may be necessary to revisit the scoping decision made by BIAN
as already described in Section 2.5 of this document. As a result, selected Service
Domains may be combined or duplicated and specialized. It may also be appropriate
to rename Service Domains to match the prevailing terminology of the Enterprise (but
note that this should not change the role of the Service Domain).

Finally the operational layout of the enterprise is mapped. This is likely to involve
duplicating groups of Service Domains to reflect lines of business, geographic
deployments and regional/shared operations. In addition the legal entity/reporting
structure of the organization need to be captured.

Specific consideration needs to be given to shared or centralized and common or
synchronized business functions. For centralized functions there will need to be two
types of instance of the Service Domains. One provides the shared service and the
other is a ‘proxy’ version in each of the supported locations to act as consolidation
access points for the shared services. For example if payments processing is
centralized there will be one or more shared central processing Service Domains and
proxy instances at each of the local access points that connect to the central facility.

Page 84 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

For common or synchronized business activities the configuration is slightly different.
In this case there will be repeated copies of Service Domains each fulfilling a local
role at each location. These local instances will then report to an additional Service
Domain instance that is responsible for maintaining the regional
consolidated/synchronized view. For example, risk management of a multinational
may be handled by local risk management functions in different locations but with a
consolidated regional or enterprise-wide risk perspective also being maintained at a
regional/central location.

As noted more detail descriptions and examples of this enterprise blueprint definition
process can be found in document three of the BIAN ‘How-to Guide - Applying the
BIAN Standard.’

4.8.2 Analysis Supported by the Enterprise Blueprint

The BIAN Service Domains define discrete business functional capacities at a high
level. Once the Service Domains have been mapped into an enterprise blueprint the
service domain aligned elements of the blueprint can be augmented with additional
specification details covering the target functional and non-functional requirements.
Some example templates used are described in document three of this series.

The same framework can be used to support business and technical planning and
analysis. Three broad categories can be considered:

1. Capability Overlays — typically using more detailed functional specifications
of the Service Domains, resources such as organizational units and more
commonly production systems/business applications can be mapped to
reveal gaps, duplications and miss-alignments.

2. Performance Measures — target and current measurements can be defined
and tracked for business and technology related aspects. In this way the
blueprint can act as a management dashboard.

3. Feature or Property — different properties/characteristics can be associated
with the service domain elements to guide planning decisions and analysis.
For example relative cost, business criticality and more complex
characteristics such as centralized/decentralized, in-sourced/outsourced. The
possible attributions are practically unlimited and can be selected and
calibrated to match the types of insights/decisions they support.

The range of approaches, techniques and possible used of the enterprise blueprint
are extensive. Often the attributions will be applied to related groups of Service
Domains clustered in Business Domains as the individual Service Domains can be
too fine grained for the high level analysis. As noted more detail and examples can
be found elsewhere in the How-to Guides. A summary if the above description is
captured in the next figure:

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 85 of 87

BIAN How-to Guide Design Principles & Techniques V7.0

Target & Current State Performance Performance Measures
Capabilities (e.g): Measures (e.0):
& Core functionalityand ™ - @ B ¢ actual to plan (budget)
services ,—l ,—l 0 & productivity
=l E== B o utilization

& Systems features

& Operational features Feature Classification (e.g):
Organizational features ¢ '”/O_Ut sourc.e'target
. . . B ¢ business criticality
& Business/Financial . .
measures B ¢ customer influencing

. I Resource
Different target and current = | ||:u | M ina/A t .
state properties can be) apping/Assesment (e.g):
mapped to the Service Foat B ¢ systems coverage
Domains of the blueprint Resource eature ioati
p Mapping Classification @ ¢ organizational coverage

Figure 45: Using the enterprise blueprint for planning & analysis

4.8.3 Linking Between Business & Technical Assessments

The final observation relating to the use of BIAN Service Domains to create an
enterprise blueprint notes that the same elements in the blueprint map to those used
to implement targeted solutions. As a result the link between the high level planning
and analysis performed using the blueprint and the underlying systems is greatly
simplified. As a result of the common BIAN Service Domain partitions investment
decisions can be related directly to the underlying systems solutions. This linkage is
captured in the figure below:

BusinessBcenariost

BIAN Standards

BIANBervicedDomainsitirel
usedtouild@Enterprisel
Blueprint?

Point Solutions Enterprise Analysis

Legacy Multi-Tier Cloud/
Mainframe Hybrid Distributed

Designs@ApplieddnDifferent?
PrevailingTechnicalEnvironmentsQ

Business®Priorities@rel
linked@ohe@nderlying
systemsfZ

The two prevailing uses of the BIAN standard can be linked
Figure 46: BIAN designs help bridge between point and enterprise viewpoints

The arrow connecting the two deployment views underscores the connection.

Page 86 of 87 BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany B I A N

BIAN How-to Guide Design Principles & Techniques V7.0

5 Conclusion

This document covering the BIAN design principles and techniques is intended to
provide business and systems architects with an explanation of the approaches BIAN
has developed in order to define canonical SOA designs for the financial services
industry (with initial focus on banking). It contains the current approaches used and
under discussion within BIAN at the time of publication.

The document is a working document that will continue to be updated as BIAN
refines these design principles and techniques based on practical experience and
feedback from the membership and others in the industry. BIAN published these
design principles in order to encourage an active debate on a practical approach to
develop canonical SOA designs that can support the industry.

B I A N BIAN e.V. | Platz der Einheit 1 | 60327 Frankfurt am Main | Germany Page 87 of 87

