~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

Banking Industry
Architecture Network

BIAN

Semantic API Practitioner’s
Guide

~BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry

Architecture Network

Organization

Name

BIAN Lead Architect Guy Rackham

Status
Status
DRAFT

Approved

Version
No
8.1

BIAN

Date Actor
December BIAN Membership
2019 reviews
BIAN Architectural
Committee

Comment / Reference

First version (for limited release)

BIAN Semantic API Practitioner Guide V8.1

Company
BIAN

Comment / Reference
Revised June 2020

Date
July 2020

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

~BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Copyright
© Copyright 2020 by BIAN Association. All rights reserved.

THIS DOCUMENT IS PROVIDED "AS IS," AND THE ASSOCIATION AND ITS MEMBERS, MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS DOCUMENT ARE SUITABLE FOR
ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

NEITHER THE ASSOCIATION NOR ITS MEMBERS WILL BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR
RELATING TO ANY USE OR DISTRIBUTION OF THIS DOCUMENT UNLESS SUCH DAMAGES ARE
CAUSED BY WILFUL MISCONDUCT OR GROSS NEGLIGENCE.

THE FOREGOING DISCLAIMER AND LIMITATION ON LIABILITY DO NOT APPLY TO, INVALIDATE,
OR LIMIT REPRESENTATIONS AND WARRANTIES MADE BY THE MEMBERS TO THE
ASSOCIATION AND OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE ASSOCIATION.

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Table of Contents

1 — Contents & INtroduction...........coceeuieerceeieinenieiniiienceneseeeseeseereeeesnessaene 9
2 — Some Key BIAN Design Considerations..........cceccevceereriersinsecrecscnninsunseeseesseseeenaes 12
2.1 Why bother with BIAN?c.ccccomntiiimiiiiiiincntnit et ssssese et sessesssssassnens 12
2.2 BIAN uses an ‘Asset Leverage’ Model VIEWccoceveevrcieiinirciencncnncsnenecnncneeneenees 14
2.3 Component Vs Process Business Designs — an example for comparison............cccccevuueee 17
2.4 The BIAN Service Domain — Some Example Definitions.........cccevervnvinniviniirenrisncrenninnns 19
2.5 Service Domain Encapsulation..........cccccceeueneiimenntinenninneicnnenieciennesecseeneeessesesneeenees 23

3 — The BIAN Design Artifacts.......ccceevviruinenienninneircninininieicnnesssinesesssessssscssessens 26
3.1 The BIAN Service LandSCapec.cccoecueeuerurreesintisenienirceseeieseseeseesessesseesessessesassessenees 26
3.2 BIAN Service Domain Specifications........ccoceeeeiesereiirsicnsciieniensinsieniesesnesieessessssssessenses 27
3.2.1 Service Domain Functional Patternsccccevevieenieinieinecineninicieeeceeneenene 28
3.2.2 Service Domain Asset Types & Right-sizing Service Domains..........cccccecveeeuennnne. 29
3.2.3 Service Domain Control Records...........ccevereririnienienienieieeneniesesecseeeeeecene e 32
3.2.4 Control Record Behavior QUAalifiers..........ccceveecverieeenienieienieeiesie e 33
3.2.5 Service Domain Service Operations & Action Terms.........ccceceeerircecenieeninennene 35
3.2.6 Service Domain First Order CONNECLIONScoceeververveieieenerieneneenenieteeeeereneenes 39
3.2.7 Service Domain Information Profileccccoceverineniiiiiinininininececececeen 41
3.2.8 The Figure “8” DIagram........ccceeiruerieriiieieieitniteestenteteteteiee st sae et re e enes 45

3.3 BIAN BusSiness SCENATIOScceeerueruirrisiisniniieiitieiienisenensaessessessessesssssessessessessessesees 46
3.4 BIAN WIIeflamecccoccniiiniininimniicincnniiciectsst st et sesssssssesesessestsssasessssenssnees 49
3.5 BIAN Semantic APIs (REST Mapping and the BIAN Semantic API Portal) 52
3.6 Service Domain Event Triggering (Proposed design extension)c.cccceeceucruccveuenee. 58

4 — Implementation APProachesccccceceeeceerirerieeriesersnerseesessesseessesssesssesssesssesssesasens 62
4.1 Key Properties of Component Design...........cccceeeuirureuenerneirennuenercinenienescenecsesseseesnensenees 63
4.1.1 Components & The Main Driver for Componentizationcccccoeeueiruccniccnnne. 64
4.1.2 Information Architecture - Contrasting Component & Process Approaches.......... 67
4.1.3 Communications — Component Support for Standard Services..........ccccerveerereenen. 74

4.2 Adding Implementation Detailc.ceoevvinirrinimninisnnininnnnniiininincesceecesienees 78
4.2.1 Conceptual REQUITEMENTScc.coueriiieiriieiinierieeienteeeetee ettt 78
4.2.2 Logical DESIGNScveuiiuiiiiiiiriiiiicieietetetee sttt e 80
4.2.3 Physical SpPecifiCationscocceueruerieiririnenienenteeteteeeeee st 87

4.3 Implementation APProaches..........ccccoceeeirciuicirnuirrnnniiniirenirciecreceescceeneeeeeneeenees 90
4.3.1 Legacy Wrapping APProachescccccevieiririenienienieieiiieenceeseeneeeeeeeeee e 91
4.3.2 General Approaches (for legacy wrapping & greenfield development) 96

BIAN 5

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

[

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

ALACHMENES c.cveiireiieeeieeeieiirntrreeteeeesesisrtrrsteesiessssssssssseessssssssssssssessssssssssssssrssssssssssns 104
ATTACHMENT - A — Action Terms Related to Functional Patterns......ccceeevueeeeeevreevennne 105
ATTACHMENT - B — Right-sizing a Service Domain..........ccceccoevviivurniicnininnnninncrenecnnenes 109

BIAN 6

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Table of Diagrams

Figure 1 - Comparing Componentized INAUSEIIES.........ccoveiieeieeiiii i 11
Figure 2 - Example Navigational Model View of @ TOWNccooviiiiniiiininenecee 14
Figure 3 - A Service Domain Does Something to Something...........ccccccevviiiciiccceenen, 16
Figure 4 - Process Vs Component Model VIBW ... 17
Figure 5 - Process Vs Component Model of a Mortgage Applicationccccccvevveenen. 18
Figure 6 - The Functional Patterns and Asset Decomposition Hierarchy 21
Figure 7 - Two Service Landscape Formats with Business Areas/Domains Highlighted 27
Figure 8 - BIAN Functional Patterns with DesCriptions...........cc.covvvvrieiiienenesescsiee 28
Figure 9 - BIAN Functional Pattern Generic ArtifactS...........ccccoovevieeiieciie e, 29
Figure 10 - Top Level BIAN ASSEE TYPES.....cciiiiiiieieieiesiese st 30
Figure 11 - Excel Extract of Service Domain Control Record...........ccccccvevevveiviieiinennn. 33
Figure 12 - Functional Pattern/Generic Artifacts and Behavior Qualifier Types............. 34
Figure 13 - Party Reference Data Directory Control Recordccccccevvviveiveieiiesinennn. 35
Figure 14 - Action Terms with Definition and EXamples..........c.ccoovovviiiienncnncnenn, 36
Figure 15 - Default ACLION TEIMS......ccviiiie et 38
Figure 16 - A Business Scenario with Nested Service EXchanges..........cccccoeveniniienn. 40
Figure 17 - The Information Profile — Top Level with Content Descriptions.................. 42
Figure 18 - The Fractal Nature of the Information Profileccccoooeiiiiiiinniien, 43
Figure 19 - Service Domain Key PropertieS..........cccuvveiveieiieieeie e esie s 45
Figure 20 — The FIgure “8” DIAQIaMcccooiririirieieieiesie ettt 46
Figure 21 - Example Mortgage BUSINESS SCENAIIO..........covieeieeiieiie e 48
Figure 22 - Simple Wireframe for the Mortgage Application Scenario.........c.cc.ccevreenee. 50
Figure 23 - Customer Servicing Wireframe with Mortgage Scenario Highlighted.......... 51
Figure 24 - REST Archetype mapping to BIAN Generic Artifact ..o, 55
Figure 25 - BIAN APl End POINt FOrMAt.........cccoooviiiiiieie e 57
Figure 26 - Four Quadrants two DIMENSIONS.........cccueieiiiiiirierienienie e 62
Figure 27 - Example of a Stand-alone Application and Operational Reuse...................... 65
Figure 28 - Database Related to the Process Model View...........ccccoovveiinincnciencienn, 70
Figure 29 - Process CRUD linked to Service Domain Information Governance............. 71
Figure 30 - BIAN Mortgage Application Business Scenario (repeated)ccccevvreenee. 82
Figure 31 - Two Distribution OPtioNScccooveieiiieiieiieie e 85
Figure 32 - APPlCAtION CIUSTETc.oiiiiiiiiee s 86
Figure 33 - Functional Patterns Mapped to SW Techniques & Utilities...............cc....... 89
Figure 34 - Scope of BIAN Against the Conceptual/Logical & Physical Layers 90
Figure 35 - Parallel Core Service Domain Migration.............ccccecvivievverecieseese e 96

BIAN 7

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

[

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

Figure 36 - Eliminating Service EXChanges.........ccccvcvveiiiieiieie e 97
Figure 37 - Shared Platform for Consolidated Reporting.........ccccceevevvereieesneresiesnennns 98
Figure 38 - Three TYPES OF ACCESSccvciuiiieiiiciie ettt sre s 99
Figure 39 - Three Types 0f ACCESS SCEMAoiveiviiiiiee e 100
Figure 40 - Contrasting Type 3 and Type 1 & 2 ACCESS ...ccveeveireerieeieireeieseesieesre e 101
Figure 41 - External Access Framework Wireframecccccoocevivevviieiieeie s 102

BIAN 8

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

1 — Contents & Introduction

Contents

This guide describes the techniques for systems technical leads and architects to
interpret and apply the BIAN Semantic APIs. It covers both legacy system
enhancements and new system development. It is set out as follows:

1. Introduction —why use BIAN semantic APIs for development?

2. Some Key Design Considerations — explains the key design properties of the
BIAN standard that technical leads and architects need to be aware of

3. The BIAN Specification — describes the BIAN design artifacts available for
technical leads and architects:

a.
b.

~oao

The BIAN Service Landscape
BIAN Service Domain Specifications
i. Functional Patterns
i. Asset Types & Right-sizing Service Domains
ii. Control Records
iv. Behavior Qualifiers
v. Service Operations and Action Terms
vi. Service Domain First Order Connections
vii. Service Domain Information Profile
vii. The Figure “8” Diagram
BIAN Business Scenarios
BIAN Wireframes
BIAN Semantic APIs (The BIAN Semantic API Portal)
Service Domain Event Triggering (proposed future BIAN extension)

4. Applying BIAN designs in different implementation contexts — Development
covers both “back-office” transaction systems and interactive and decision
oriented “front-office” customer facing systems. Approaches combine integrating
with conventional process based designs and developing more advanced
container based architectures:

BIAN

PART 1 - Key Properties of Component Design — clarifying the key
development implications of adopting a component architecture

PART 2 - Adding Detail to the BIAN Service Domain Specifications —
extending the BIAN semantic conceptual designs for implementation
PART 3 - Implementation Approaches — detailing specific approaches to
physical application designs that leverage the component model

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Introduction

The financial services industry is experiencing intense pressure as the status quo is
challenged by: sweeping regulatory changes; the proliferation of advanced technologies;
and, FinTechs testing traditional banking models. Finally, it seems many banks are
ready to confront the severe limitations of their aging systems. At the same time, they
seek to position themselves to compete with new and emerging banking practices.
Information technology represents both a significant constraint and a key enabler for
banks during this period of radical transformation.

But there is a fundamental technology challenge: most legacy systems and even many
more recent system developments have been designed to streamline and automate
highly structured banking processes. Over time the cycle of incremental process
automation has resulted in increasingly fragmented and overlapping application
portfolios as new process oriented solutions have simply been superimposed on existing
processing facilities.

To break this cycle both to repurpose legacy systems and integrate new advanced
solutions banks need to adopt a very different approach: one based on a
‘componentized’ model of the banking business. This component view of banking
defines discrete functional building blocks that can be flexibly assembled to support the
business.

Drivers of industry componentization

When an industry achieves componentization it’s participants can specialize and
develop more advanced individual components that can then be combined to collectively
deliver more sophisticated products and services overall. A componentized industry is
also better able to exploit new technologies and approaches as the associated change is
typically localized, impacting only one or a few components without destabilizing others.

As some simple industry comparisons below show, the auto industry is a good example
of a highly componentized marketplace where most vehicles combine parts from multiple
specialist suppliers allowing the industry to offer ever more sophisticated products.
Perhaps a less obvious example is the film and entertainment industry. With its clearly
defined roles (e.g. actors, writers, producers, directors) a project team can quickly be
assembled to support the production of a single film. Furthermore, its recent rapid
adoption of computer-generated imagery (CGI) is a good example of the film industry’s
resilience to change. For the finance industry however, defining its own component
‘blueprint’ has proven elusive.

BIAN 10

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

A common industry ‘blueprint’ allows participants to specialise. Collectivey they can
assemble more sophisticated solutions.

COMPONENT BLUEPRINT COMPONENT BLUEPRINT COMPONENT BLUEPRINT
For Manufacturing: For Media: For Financial Services:
TheAuto Industry... The Film Industry... Banking???

Custody &
Payments

Loans &
Investments

Financial Risks

...defines the different parts ...agrees specialist roles ...what model defines the

that are assembled in acar involved in making afilm financial services ‘components’?

Example Disruptive Change: Example Disruptive Change: Example Disruptive Change:
Electronics Digital Media & CGI FinTechs & Technology

BIAN is defining the banking component model

Figure 1 - Comparing Componentized Industries

The BIAN standard defines a component business blueprint for banking. It has been
developed specifically to address the problem of application portfolio complexity,
enabling banks to progressively componentize their business operations. It adopts a
novel business model view to identify the standard business functional components (the
BIAN “Service Domains”).

In recent years BIAN has extended the detail of the Service Domains’ service operation
specifications. These extensions provide a semantic definition of the underlying
exchanges that can be interpreted as the high-level application programming interface
(API) requirements that connect these components together.

This guide outlines the BIAN standard and defines the particular approach for systems
designers and builders to apply BIAN semantic APls to wrap/re-purpose legacy systems
and to integrate new container based ‘micro/macro-service’ solutions into the bank’s
application portfolio. It considers the approach needed for restructuring the back end
transaction-processing systems and also addresses the far more interactive workforce
and customer facing systems that cover activities such customer servicing, new
business development, risk management and product delivery and distribution.

This guide describes the foundational BIAN architectural design principles and

techniques to the level necessary for technical leads and architects to correctly interpret
and apply the BIAN standard. A more thorough explanation of the BIAN approach is

BIAN 11

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

available in architectural training and presentation materials available on the BIAN
website and through BIAN general training and certification services.

2 — Some Key BIAN Design Considerations

The BIAN Service Domains and associated semantic APIs define the mainstream
business requirements at a high level that must then be extended to develop
comprehensive implementation level specifications. It is not necessary for technical
leads and architects to become overly proficient in the underlying BIAN architectural
methods to be able to apply the BIAN designs but familiarity with the core concepts can
help with the correct interpretation and application of the BIAN model.

This Section 2 covers the following design considerations/explanations:

Why bother with BIAN — what are the main benefits?

BIAN uses an Asset Leverage model view — what is this?

Component Vs process business model views — an example for comparison

The component building block — outlining key features of a BIAN Service Domain

PwnE

2.1 Why bother with BIAN?

If the BIAN standard only provides high-level semantic business descriptions that require
guite extensive effort to extend them to implementation level detail, what is the value
BIAN provides to development? Doesn’t it simply add another step in an already
complicated design and development process?

Technical leads and architects can think of a Service Domain as the conceptual design
for a major functional module, a handful of which might be found in any large production
application. The Service Domains have been specified to have architectural properties
that can have a profound impact on aligned systems solutions:

1. Discrete/non-overlapping and elemental business functions support
application containerization and operational re-use — each Service Domain
matches a discrete (unique/non-overlapping) business function that is elemental
in its role (i.e. is only assignable in its entirety). A Service Domain is also
specified to be responsible for handling the full lifecycle of its business function
every time it is undertaken. As a result, a Service Domain encapsulates its
business information and logic. The Service Domain can be implemented as a
discrete service container with all external information exchanges handled
through service operations.

BIAN 12

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Less obvious is the potential for operational re-use. When business activity is
modeled using the BIAN approach the work tasks that might otherwise be hard-
wired into a specific automated process are replaced by discrete, specialized,
service-enabled business functions that can be re-used in any applicable
business context leading to very high degrees of operational capability re-use.

2. Stable over time supporting incremental development and adoption —a
Service Domain has a business role or purpose that is defined independently of
the way it might be implemented (i.e. it is defined in terms of what it does, not
how it does it). The Service Domain’s discrete business function/responsibility is
highly stable over time. As business practices and techniques evolve the inner
working of a Service Domain may be enhanced with additional features. Extra
service connections may also be needed but its foundational business
role/purpose will remain unchanged.

With good design a Service Domain can be built and integrated incrementally.
Only the required functionality is developed as and when needed. This then can
be continually enhanced/extended as the Service Domain is reused in other
business contexts. As a result, Service Domain aligned solutions can enjoy a
much longer shelf-life than conventional process based systems.

3. Canonical or the ‘same for everyone’, supporting high levels of
interoperability — BIAN service domains define the generic functional building
blocks that make up any bank. They can be compared to Solution Building
Blocks as defined in TOGAF. Their role/purpose can be consistently interpreted
from one deployment to another. They define business functionality that can
usually be assigned to a responsible party in the organization that handle their
operation and evolution/development. In different deployment situations a
Service Domain may include a small proportion of functionality that is: location
specific; more advanced; or unique/differentiating. But the Service Domain’s core
functionality is generic. In addition, its service connections, i.e. its position in the
overall business blueprint is also generic.

This means a bank or solution provider can switch out the underlying system for
a Service Domain to replace it with an alternative solution. Once its service
connections have been re-established (that will usually require some amount of
detailed mapping and wrapping work) all other surrounding business activities
should be largely unaffected.

In summary the value of the BIAN standard is to provide a conceptual business
component framework for solution design and development. Its specifications define the
standard functional building blocks in sufficient detail that they can be consistently
interpreted in terms of the role of the Service Domain components and the intention

BIAN 13

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

behind the service exchanges between them. The business information governed and
exchanged by the Service Domains also define a high level business information
architecture.

The high level conceptual BIAN specifications can jump-start development but the
detailed (site-specific) implementation level designs are still required. Once built
however, the Service Domain aligned systems will support incremental development,
substantial operational reuse and where needed enable highly distributed and
collaborative configurations. Furthermore, the migration to a service-based component
architecture will progressively eliminate the excessive fragmentation and redundancy
present in most banks’ legacy application portfolios — an issue that today adds significant
complexity and operational overhead to most banks’ operations.

2.2 BIAN uses an ‘Asset Leverage’ Model View

The intent of a ‘model view’ of anything is to represent it in a concise format that
highlights some specific properties or features of interest. For example, the map of a city
highlights the roads and pathways for those wishing to get about, eliminating or greatly
simplifying the representation of other aspects that could be distracting such as the
precise structure of the buildings. Compare the A to Z° map of central London to a
satellite image of the same location:

Figure 2 - Example Navigational Model View of a Town

It is important to be aware that the BIAN specification adopts a completely different
model view of business activity than the more conventional process centric approaches
that are widely applied today. This difference has far reaching implications for architects
interpreting the BIAN standard.

Why has BIAN selected a different model perspective?

BIAN 14

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

The conventional process oriented models represent business activity as a linked
sequence of work tasks. This perspective is most useful for systems that automate these
actions as a repeating workflow like a factory production line. A good proportion of
banking activity (transaction processing in particular) suits this model view well where
automation and straight through processing (STP) are the goals. But systems that
support more interactive/collaborative workflows and that integrate advanced analytics to
drive decision making can benefit from using a different model. For these types of
systems, a component business model is far more representative.

The challenge for BIAN has been to select and apply a technique for defining a banking
component model specifically suited to service oriented design: one that helps isolate a
comprehensive collection of discrete (non-overlapping) business functional components
and that also defines the service exchanges that occur between these operational
‘building blocks’. Furthermore, as already noted, in order to be an industry standard the
scope or role of each conceptual building block and its associated service exchanges
needs to be ‘canonical’ in nature, i.e. consistently interpretable by all industry
participants.

So what is the component model that BIAN uses? - an “Asset Leverage” model

The technique BIAN uses to isolate its banking components is referred to as an ‘asset
leverage’ model. It is an empirical rather than theoretical technique meaning that a
candidate component is first defined and then tested out in practice, modeling its
behavior using real world scenarios to confirm and refine its definition. BIAN members
have spent several years considering numerous business events in order to define a
comprehensive collection of banking components, the “Service Domains”, that today
cover most banking activities.

The asset leverage model considers two aspects of an enterprise. The first aspect
reflects that the business possesses/has access to things of value or ‘assets’. These can
be tangible things like buildings and computers, or intangible things such as
relationships, knowledge/knowhow and goodwiill.

The second aspect is that in day-to-day execution these assets are controlled or
manipulated in specific ways (using IT control systems) to enhance and/or exact
commercial value from them. The types of control applied can be categorized using
different general “functional patterns”, for example a computer is operated, a customer
relationship is managed, market knowledge is analyzed to extract insights.

BIAN 15

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

A Service Domain is responsible for “doing something to something”

Customer

. Relationships Knowledge & Administer QOperate
Reputation & Knowhow Manage
Capital Track
The Bank has ...that it controls or
Servicing resources, tangible leverages in Analyze
Capacity & intangible... various ways...
Service Domain
Production i sy
Capacity Employee Design Fulfill
Commitments
Components/Service
Domains are generic
and stable over time
... in order to
create commercial
value.

Figure 3 - A Service Domain Does Something to Something

A BIAN Service Domain is defined to be responsible for implementing one pattern of
control to instances of just one type of asset. The Service Domain does this from start to
finish for the complete life cycle, as often as required by the business.

Unlike the production-line process implementation where the steps in the processing
logic are tightly linked together from end-to-end for one specific purpose, the BIAN
Service Domain functional components can be implemented in a manner that allows
them to be more loosely coupled together. They can be engaged in any suitable
combination and sequence as necessary to address many different business events, in
parallel if needed. These design properties are revisited in more detail with examples in
the next section.

BIAN 16

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

The BIAN approach applies a differrent model view of business activity in order to
define canonical (standard) business functional partitions —the BIAN “Service Domains”

Traditional business models are process BIAN uses aspecific type of service
oriented. Business activity is viewed as a based design to isolate discrete and
series of linked decisions and actions... autonomous business functions...
“ Sared
Database
’ Shared
Message
C) Vocabulary
“intemal | ‘nternal |
Data Data
...and the design usually assumes ...the connections between components use
access toacommon ‘shared’view of a common business vocabulary, but each
all processing data ‘encapsulates’its own processing data

Figure 4 - Process Vs Component Model View

The Service Domains can represent concentrated centers of specific business expertise
or capabilities that can be assigned. When appropriate they can be directly associated
with responsible organizational units of the enterprise

A brief aside: BIAN’s original intent in selecting an approach was to help eliminate the
complexity in the bank’s application portfolio to improve interoperability within banks by
defining a service oriented architecture (SOA). It is a convenient coincidence that the
same BIAN Service Domain functional partitions define highly encapsulated and
autonomous components that are well suited to implementation in the highly distributed
cloud/container technical environments that are being increasingly adopted with the
support of APIs today. Indeed, without a robust business partitioning approach such as
that used by BIAN, it is extremely difficult to develop highly distributed systems of any
scale mostly because handling shared business information quickly becomes
excessively complicated.

2.3 Component Vs Process Business Designs — an example for comparison

The difference between a more conventional process model view and the component
type of model can be demonstrated using the simple example shown below for
processing a mortgage offer made to a customer. In the process model on the left the
workflow is broken down into ever finer grained actions that can then be programmed as
an (partially) automated workflow. The component view on the right however simply
defines a linked collection of specialized business functions (components).

BIAN 17

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

An example shows the different model views for a mortgage application. The bank and
customer first agree general terms and formalise details when a property is found...

Mortgage loan

application

Product Customer Data
Gather customer Shared Database Directory Management
& loan details — — Product Details Cusmmer Details
Customer Application

Negotiate and Details Product Details
agree terms s I s
Underwriting Customer Offer Credit
Decisioning Processing Administration
—_—— —_——

Collateral Document

Asset Services
e —
Collateral Details Document Registry

Mortgage
Fulfillment

—————
Application

Abandon Check credit
Application worthiness

Establish loan &
disburse funds

The are many possible variations in the process view, but the components are the same

Figure 5 - Process Vs Component Model of a Mortgage Application

In the conventional process model the end-to-end linked sequence of actions is
streamlined and where possible automated. Once the system is built to execute this
defined series of automated tasks however, it may not be too easy to amend this
sequence to handle different business situations that might subsequently evolve. In the
example the mortgage is pre-approved and various checks are made before the property
is found. What if later there was a new requirement to shift the approval decision until
after the property is identified for some reason?

Conversely in the service-centered design represented using BIAN Service Domains all
the involved specialized business elements are identified, but no specific sequence is
inferred — they simply interact as and when necessary through triggered or orchestrated
service exchanges. If they are correctly implemented the ‘service centers’ should be able
to support many different processing sequences/variations with little or no change to the
workings of the individual components.

In addition to the flexibility to support any suitable sequence or pattern of collaboration,
the example highlights the potential for re-use of the operational capabilities. In the
process model the logic and data is all embedded in the processing engineered to
handle this one specific business event and it may not be easily separated out for re-use
elsewhere. By contrast, in the service-centered model, each Service Domain can be
designed to operate autonomously and be engaged in many different business events.

BIAN 18

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

For example, the Credit Administration component that is responsible for determining the
credit worthiness of the customer could be reused in many other business contexts such
as product selection/matching during customer relationship development as indicated
with the partly obscured components towards the right hand side of the diagram above.

A component model does not mandate a service-oriented approach...

It is important to make the distinction between the related concepts of componentization
and service enablement. Componentization defines discrete business capabilities. Its
value is to identify specialized business functional partitions that can be defined and
refined in isolation and used and re-used in many combinations to support different
business behaviors. Componentization is useful to eliminate operational redundancy, to
streamline business operations and to support highly distributed/decoupled operating
models and their supporting systems when appropriate.

Service enablement is an implementation option that can be applied to the (systems
underlying the) components to support a more flexible/dynamic operating model, but
sometimes introducing significant overheads in terms of service latency/performance
and orchestration. Service enablement greatly suits applications in the front office where
interactive collaboration is needed and the flexibility to mix and match capabilities can be
leveraged. Conversely, for back office transaction processing where the activity is more
repetitive and fixed-sequence in nature the component connections tend to be more
permanent. Here throughput/performance is usually more important, off-setting the
benefits of the flexibility provided by service enablement.

For the transactional systems the component view is still useful however, to better
partition and decouple activities, to streamline, optimize and/or batch together
processing. Standard ‘service aligned’ interfaces can also be used to import/export
information. But transaction processing related exchanges within and between the
transaction systems are typically better implemented as ‘hard-wired’ point to point
interfaces rather than service enabled connections. More is said about this later...

2.4 The BIAN Service Domain — Some Example Definitions

BIAN’s membership has defined a collection of 320+ Service Domains over several
years using real-world banking examples. The designs are based on a mutually
exclusive, collectively exhaustive (“MECE”) hierarchical classification of some 250+
generic banking asset types combined with nineteen distinct patterns of
commercialization behavior (called ‘Functional Patterns’ that include the three example
behaviors: operate, manage and analyze briefly mentioned earlier). These design
features are fully defined in the next section of this guide. Here some examples are used
to describe the core architectural properties of the Service Domains in more general
terms first.

BIAN 19

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

As outlined earlier, a “Service Domain” represents the combination of one pattern of

commercialization behavior being applied to instances of one type of asset. The Service

Domain is also defined to be responsible for fulfilling this business function for the

complete lifecycle and for as many times as might be necessary. Using the same three
functional patterns again, the behavior of some example Service Domains is as follows:

Systems Operations — is a Service Domain that operates a computer facility
(such as a production application platform) from the time it is turned on to the
time it is switch off — for as many operating sessions as might be required over
the production life of the technology

Customer Relationship Management - is responsible for the set-up,
maintenance and execution of a customer relationship plan from the time the
relationship is first established through to its termination. It does so for every

active customer relationship that it manages

Market Analysis — is responsible for consolidating the market

information/research and applying whatever type of analysis might be required at

any time to develop any particular market insight when requested

Though every Service Domain applies a single pattern of behavior to instances of a

single type of asset for the complete lifecycle the above descriptions show that Service

Domains may manifest a wide range of operational behaviors depending on their
particular business role.

For example, some Service Domains may act on only one or a very few concurrent

asset instances whereas others may be handling many millions of instances at the same

time (compare Systems Operations that handles a single production system operating
session at a time to Customer Relationship Management where there may be many

millions of active relationships). Similarly, the life cycle for some may be extremely long
where as others may ‘churn’ quickly (for example the Service Domain “Product Design”

handles product design specifications that can persist for many years Vs. the Service

Domain “Customer Contact” that handles call center conversations with customers that

each may often last just a few seconds).

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

20

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

A Service Domain represents the responsibility to implement a specific pattern of
commercial behavior to instances of a specific type of asset

Assets are identified
using a "MECE”
decomposition
hierarchy

The Bank has LT iE sontrads o
o

ressurces. targible evarages
T o e

commercial behavior have
been identified and
refined in use B =

= o
¢m‘w¢m‘ X Wm P.mrn s ssaspuer.
\""_',#/ 19 standard patterns of % crm v e e e

The Service Domain uses a ‘Control Record’ to keep track of each time/instance it
executes its responsibilities for a complete lifecycle

Figure 6 - The Functional Patterns and Asset Decomposition Hierarchy

The top level of the asset decomposition and nineteen general functional patterns that
BIAN has used to develop Service Domains are shown schematically above. Note that it
is not necessary for implementers to be overly familiar with these terms. But when
considering the role/purpose of a Service Domain it can help to focus on its functionality
by considering the main behavior it implements (its associated functional pattern) and

the subject it acts upon (the asset type) as represented by the Service Domain’s ‘control
record’.

The Service Domain’s Control Record

Every BIAN Service Domain specification defines a single associated operational artifact
called its “control record”. This is simply the mechanism it uses to control or trace the
execution of one occurrence of it performing its business role for a complete lifecycle.
The control record is an important feature of a Service Domain for development because
it contains most of the key information that is likely to be referenced and exchanged in
service operations between the Service Domains. As already described, the control
record reflects the combination of the type of asset acted upon and the functional pattern
being applied. Expanding on the three Service Domain examples already mentioned:

Systems Operations — its control record is the system operating session that
defines the schedule of actions taken and captures any details of operational

BIAN 21

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

events that occur or tasks that are processed throughout a complete operating
session cycle for the production system

Customer Relationship Management — its control record is the customer
relationship plan/charter that sets out the goals, relationship development actions
and records key events and performance over the complete duration of an
individual customer relationship — often likely to be many years

Market Analysis — its control record is the market analysis perspective
developed, including the detail of the information referenced and the analysis
algorithms applied in order to develop specific insights for one analysis request

Other than general operating control and reporting information that every Service
Domain maintains when implemented as a service center, the significant majority of the
information accessed by other Service Domains through service exchanges is extracted
from one (or more) of its active control record instances.

As noted, the Service Domains each support a discrete and non-overlapping business
functional partition that collectively cover all banking activities. It follows that the discrete
partitions of business information they each govern and exchange through service
interactions (as defined by their control records) together defines a type of high level
business information architecture.

Service Domain Service Operation Action Terms

The last key design feature of the Service Domain that is outlined in this section relates
to the Service Domain’s service interface. BIAN has defined a standard set of “action
terms” that characterize the type of service operation exchanges that a Service Domain
supports. The complete collection of action terms is also described later but using the
three Service Domain examples one last time for a quick preview of some BIAN actions
terms: (the standard action terms described here are initiate, retrieve & evaluate)

Systems Operations — its control record is the system operating session and an
example service operation that might reference it would be a call to “initiate” an
operational service or feature as would be defined and handled using information
held in the control record. For example, to initiate an ATM withdrawal transaction
from a teller device that is being operated on the ATM network

Customer Relationship Management — its control record is the customer
relationship plan and an example service operation would be a call to “retrieve”
an assessment of performance to plan for a particular customer relationship that
would be maintained in their associated control record instance

BIAN 22

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Market Analysis — its control record is the market analysis perspective and an
example service operation would be a call to “evaluate” some specific aspect of
the market. The service call would result in the creation of a new control record
instance that would contain the input market reference information, applied
analysis algorithms and the eventual findings of the analysis that are finally
returned

2.5 Service Domain Encapsulation

Because the Service Domain handles all activities for the complete life cycle it
internalizes or encapsulates away much of the more complex processing logic and
associated business information. Any other Service Domain calling on its services only
needs to understand the externally visible information contained in any of its offered
services. This typically involves a more easily interpreted sub-set of the complete set of
information that a Service Domain uses.

For example, the Customer Relationship Management Service Domain as already
described contains detailed analysis of product and service utilization and performance,
a potentially lengthy schedule and detailed record of meetings, product utilization
projections, relationship development ideas etc. But only an extract or higher-level
interpretation of this information will be provided through its offered external services. A
caller requesting details of a customer’s profitability has no need to understand the many
detailed aspects of relationship management to be able to interpret a simple relationship
profitability performance report that is derived from all of this information.

The encapsulation of processing logic and information results in two different
perspectives of the Service Domain’s business information. There is the detailed and
potentially extensive Service Domain specific logic and data needed to support its
internal processing. Then there is also the shared/external business information that
makes up the content of the services it offers to calling Service Domains — this
represents a common business vocabulary that is typically a much more limited subset
of the managed business information.

The detailed internal logic and data can adopt any suitable format/schema as it is not
shared outside of the Service Domain and would typically be maintained on an
internal/local database. The shared business vocabulary however needs to be defined
consistently amongst all that access it.

The BIAN Business Object Model (BOM) that is under continual development is a
conceptual data model that captures this shared business vocabulary. This provides a
consistent definition of the control record content and the exchanged business
information passed by services between the Service Domains.

BIAN 23

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Information Precision

The shared business vocabulary by definition covers concepts that span the business
that will typically include the more general and widely recognized banking terms. This
shared business vocabulary needs to conform to a common definition/specification. The
required precision of this definition however varies depending on the nature of the
information and the way it is handled.

Some shared business information requires a very precise definition — financial
transactions for example are made up of elements/attributes with exacting specifications,
such as the amount, currency, processing dates and involved accounts/counterparties.
Other information has less inherent precision and can be represented in unstructured or
variable formats (such as a customer’s credit evaluation, product preferences, or a
financial market performance analysis).

Furthermore, the required precision for the service exchange is very different if the end
consumer is a machine versus a cognitive/human reader. A basic machine will only
correctly interpret precise machine-readable data elements that have been fully specified
in advance. An intelligent reader on the other hand is able to handle complex/variable
formats and interpret and extract relevant information from unstructured presentations.

Traditionally the term API has referred to structured machine-to-machine connections.
Service APIs are increasingly being defined to support screen-based dialogues where
the provider or consumer or both is cognitive/human. This distinction is important when
relating the BIAN service operations to underlying systems APIs as will be explained
with examples later in this guide.

BIAN 24

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Section Summary

The objective of this section is to clarify that the BIAN representation of business as
discrete functional components that can be service enabled is fairly novel and distinct
from conventional process based designs. It explains that aligning development to the
BIAN component boundaries can have significant beneficial architectural implications but
recognizes that aligning to the specifications requires an investment of effort by
developers in interpreting the BIAN specifications.

The section described some of the main properties of the foundational building block of
the BIAN model — the Service Domain. It explained that each Service Domain’s role is
defined to be the application of a pattern of behavior (functional patterns) to instances of
a type of business asset. It also outlined that BIAN defines standard types of service
operations (action terms) offered by a Service Domain to others requiring access to its
capabilities.

In the next section the different BIAN design artifacts are described in far greater detail.

BIAN 25

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

3 — The BIAN Design Artifacts

This section describes the available BIAN design artifacts. These include:

1. The BIAN Service Landscape
2. BIAN Service Domain
a) Functional Patterns
b) Asset Types & Right-sizing Service Domains
c) Control Records
d) Behavior Qualifiers
e) Service Operations and Action Terms
f) Service Domain First Order Connections
g) Service Domain Information Profile
h) The Figure “8” Diagram
Business Scenarios (examples)
Wireframe Diagrams (examples)
BIAN Semantic APIs
Service Domain Event Triggering (Proposed Extension)

ok w

The BIAN standard combines the formal canonical designs of the Service Domains and
their associated service operations with a wide collection of usage examples that help
clarify the intended working of the Service Domains. Technically speaking the usage
examples (presented in the form of ‘business scenarios’ and ‘wireframes’) are not part of
the formal BIAN standard — they are not intended to be prescriptive but instead simply
provide archetypal illustrations of how the Service Domains can interact. They are useful
to help architects model their business requirements using the Service Domains.

The available usage examples (scenarios and wireframes) also provide technical leads
and architects with a starting point for a design that can be adapted and extended to
define more detailed business requirements for systems development. Because they are
only examples, architects can change the available BIAN scenarios and wireframes to
better match their own needs as long as when doing so they do not amend the
underlying role/purpose of any involved Service Domains.

All published BIAN artifacts can be found on the BIAN public site (BIAN.org).

3.1 The BIAN Service Landscape

The ~320 Service Domains that have been identified so far by the BIAN membership are
cataloged in a reference framework call the BIAN Service Landscape. The landscape
organizes Service Domains into groups based on large business areas and within these
areas more narrowly defined business domains. The layout is simply intended to help

BIAN 26

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

with the identification/selection of Service Domains. BIAN has also created a second
layout for this reference framework referred to as the “value chain” landscape format.

The original “matrix” landscape format organizes the Service Domains into groups with
business areas (columns) and business domains (blocks) based on predominantly
technical properties of the Service Domains. The value chain format defines a different
classification of business areas and business domains that depict a more enterprise
organizational view. The Value Chain layout is designed to be more intuitive for use by
business practitioners.

The Service Domains organized in two different Service Landscape formats

Business Areas Business Domains

BIAN Service

D\a\Va\ue Chain Layout — V8.0

oW R vanaoeNen

Matrix layout

Value Chain layout

Service Domains

Figure 7 - Two Service Landscape Formats with Business Areas/Domains
Highlighted
It is important to note that both landscape layouts contain one of each of the exact same
collection of Service Domain components. With their dissimilar business areas and
business domain definitions the two landscape formats group/arrange these Service
Domains differently. Experience within the BIAN membership is that the value chain

layout is generally preferred by business practitioners. It can be more readily related to a
typical enterprise operating model or organization.

3.2 BIAN Service Domain Specifications

BIAN 27

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The building block of the BIAN model is of course the BIAN Service Domain. The main
challenge for developers when using BIAN is to frame their business requirements in a
form that uses collections of Service Domains exchanging services rather than a more
conventional end-to-end process oriented design. The BIAN Business Scenario and
BIAN wireframes are helpful design artifacts for making this transition. But before
describing business scenarios and wireframes we set out the key design aspects of the
BIAN Service Domain itself.

3.2.1 Service Domain Functional Patterns

A Service Domain is a conceptual functional design that can be mapped/related to a
major application module. As already described a Service Domain’s core purpose is that
it controls the application of some type of commercialization behavior to instances of a
type of asset. It does this from start to finish for as many occasions as called for by the
business. The BIAN approach currently defines 19 general commercialization behaviors
— called “functional patterns”. Every BIAN Service Domain applies one of these
functional patterns to instances of its assigned asset type. The list of BIAN Functional
Patterns is shown in the table:

The BIAN Functional Patterns

DIRECT Define the policies, goals & objectives and strategies for an organizational entity or unit

CREATE MANAGE Oversee the working of a business unit, assign work, manage against a planand troubleshoot issues.
Make plans,
design,

solutions DESIGN Create and maintain a design for a procedure, product/service model or other such entity.

ADMINISTER Handle and assign the day to day activities, capture time worked, costs and income for an operational unit.

DEVELOP To build or enhance something, typicaly an IT production system. Includes development, assessment and deployment
PROCESS Complete work tasks following a procedure in support of general office activities and product and service delivery functions.

INITIATE OPERATE Operate equipment and/or a largely automated facility.
Process MAINTAIN Provide a maintenance service andrepair devices/equipment as necessary.
ngg:le(ﬁe FULFILL Fulfill any scheduledand ad-hoc obligations under a service arrangement, most typically fora financia product or facilty.
tooling for TRANSACT Execute a well bounded financial transaction/task, typicaly involving largely automated/structured fulfillment processing.
psrlézzzz;s?rsi ADVISE Provide specialistadvice and/or support as an ongoing service or for a specific task/event
cedelivery MONITOR To monitor and define the state/rating of some entity.
TRACK Maintain a log of transactions or activity, typically a financial account/journalor a log of activity to support behaviora analysis.
REGISTER CATALOG Capture and maintain reference information about some type of entity.
;:: ;aéc:ﬁgﬁ ENROLL Maintain a membership for somegroup or related colection of parties.
SV/NAEN =S AGREE TERMS Maintain the terms and conditions that apply to a commercial relationship.
Pcir:é'krz gensc;' ASSESS To test or assess an entity, possibly against some formal qualification or certification requirement.
analysis ANALYSE To analyse the performance or behavior of some on-going activity or entity.

PROVIDE ALLOCATE Maintain an inventory or holding of some resource and make assignments/allocations as requested.

Figure 8 - BIAN Functional Patterns with Descriptions

BIAN 28

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

For developers the functional pattern provides a clear indication of the core functionality
provided by the Service Domain. To make functional patterns more easily interpreted a
‘generic artifact’ is associated with each functional pattern. This simply translates the
action of executing the behavior into something more concrete (basically converting the
behavior from verb to noun form). The generic artifact describes the type of
artifact/document that is used/produced when tracking the actions of the service domain
as it completes its execution from start to finish. The generic artifacts associated with
each functional pattern are listed in the table:

The BIAN Functional Patterns and their Generic Artifacts

DIRECT Strategy
MANAGE Management Plan
ADMINISTER Administrative Plan

DESIGN Specification
DEVELOP Development
PROCESS Procedure
OPERATE Operating Session
MAINTAIN Maintenance Arrangement

FULFILL Arrangement

TRANSACT Transaction

ADVISE Advice
MONITOR State

TRACK Log Record
CATALOG Directory Entry

ENROLL Membership

AGREE TERMS Agreement

ASSESS Assessment

ANALYSE Analysis
ALLOCATE Allocation

Figure 9 - BIAN Functional Pattern Generic Artifacts

3.2.2 Service Domain Asset Types & Right-sizing Service Domains

The other key facet that defines the functional scope of the Service Domain is the asset
type that it acts upon. An asset in this context is something of inherent value/purpose
that the bank owns or at least has some influence over. Assets can be tangible things
like computers and buildings or they can be far less tangible things such as
relationships, knowledge and knowhow.

BIAN 29

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry

Architecture Network

BIAN Semantic API Practitioner Guide V8.1

The asset classification used by BIAN breaks down to some 250-300 discrete asset
types. Note that in BIAN’s asset type classification the capacity to perform a business
action — such as service customers’ needs or fulfilling banking products and services is
treated as an asset type. The top level categorization of asset types used in the BIAN
specification is as follows:

Top Level BIAN Asset Types

Productio

e.g. fulfillment, distribution & sales

Product Delivery Capacity

Financial Faciity
«Credit/debit card
«Current account
I «Corporate current
account

+Credit line

*Line of credit

Financial Transaction
+Payment

+FX Exchange

*Loan

+Syndicated loan
*Leasing

[~ +Deposit

*Bearer document
«Letter of credit
~Bank guarantee
+Factoring

«Stock lending/Repo

Traded Instrument
*Price/quote

*Order

*Trade

- Matching
«Confirmation
«Clearing

«Settlement
+Custody

Financial Service
+Brokered product
“Trust
«Remittance
«Advisory

«Publc offering
" Private placement

+Cash management
«Direct debit
*Investments
*Trade finance
~Project finance

Product/Service
Operations

- Accounting
+Commissions
-Payments
+Valuations
*Underwriting
«Collateral

| Fraud detection
*Transaction
orchestration
*Transaction
consolidation
~open item
+Booking
*Documents

Instrument
Maintenance

Product Inventory
- *Materials
*Tokens

Production Analysis
«Product/service
«Counterparty risk

L - Composite position
“Gap

«Complance
«Contribution

havesomeinfluence overe.g.acustomer

1

1 1
Capacity Central Resources Relationships Intellectual Property)|
® e ST e.g. employees& e.g. knowhow&
a partners knowledge
S 8 Enterprise
Distribution Capacit! Finances Workforce Knowhow
Y Resource
Bank Faciity I- Information Switch Head Office Capttal Business Units. Product/Service
Operations . +Board of Directors |- +Cash | -Profit centers - «Product
~Trading foor Customer Senicing |- Business Model «Fixed assets «Cost centers +Product bundie
+Dealing position [~ Orders «Corporate) +Project teams
*Branch *lIssues Communications Comnitted cash Model
«Location flows Employees «Financial
Channel Operations i «Directors ~Quant
[~ eTeller/Position o e 5 & Market
«Servicing position ey pewor +Goodwil o +staff | <Creditrisc
JVR | *PBX/VRU +Brand Assets & Liabilties ST
ATM +ATM network - |- +Balance-sheet X <Bushess
+E-Branch «E-Branch network Business «Off balance-sheet External Parties ~Behavioral
~Social Network *Internet gateway Development «Operational
«Correspondence «Sales& marketin Financial Analyses
e s | -Advertising e ~Market risk Customer Rating
nformaton Frovder | physical Distribut . +Prospect
«Market research - portfoio 2pis HNW | -Business
«International standards p +Internal campaign p +Operational
Distrubution fleet T Corporate
«Financial market portfolo Buildings & ~Mutinational *Management
I~ reference Equipment - Institutional
p ;) Support services lications/IP
Financial market Sales & Marketing| <Legal «Counterparty f\ffmmque,memd
research Audt Equipment «Syndicate L
*Finncial market Eres «Office equipment *Standard
prans G e *Fleet/dstriution Partner Busiess achieclure
*News *Advertising Consumables «Supplier
o I *Security
+Prospect d «Product
Financial Market «Customer YL Buiding rJvqu o Knowledge
+Human resources 5 P
Ss) +Traiing | -Offices I Broker
L :Bgc‘e,qu?e reporting - Seling +Product ~Ops canters +Custodian General Market
al capture Applcations “Branches +Correspondent +Market insights
«Deal matchi L Surveys PP
De:‘ ;:_-:ocn ‘:'r:é; «development S ~|Agenc‘y «Competitor insights
R dq «Investor «Locati
«Deal booking Systems production «IT Platforms ocaten
Enterprise Analyses E‘D:z"‘“:;“&"‘ Authority
+Segment L Promsng & Sorage | *Reguiator
. . +Product ~Communicatons +Auditor
Anybank has acollection assets that it can own or L .cysiomer e «Legilator
+Branch ~Certication
i - o «Channel “nsallaion
relationship, cash, orapaymentfacility. The asset ~Property

needs to have an associated use or purpose

Figure 10 - Top Level BIAN Asset Types

Right Sizing Service Domains

Right sizing is key to ensure the defined Service Domains are ‘elemental’ — meaning that
a bank either needs the Service Domain in its entirety or it does not, i.e. it can’t split the
Service Domain to adopt only some subset of its core function. Defining elemental
Service Domains is necessary for the BIAN standard to be canonical: i.e. designs that
are consistently interpreted in different deployments. (If it is possible to apply just part of
a component its specification quickly ceases to be standard...)

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

30

BIAN

BIAN Semantic API Practitioner Guide V8.1

The right sizing technique used to define Service Domains is quite complex and is not
something that technical leads and architects need to learn to apply themselves as all
the Service Domains they need should already be fully specified. The technique is
properly described in BIAN architectural guidelines and training materials. An outline
description of the technique is included for reference as Attachment B to this guide for
convenience.

Briefly the right sizing technique involves decomposing the types of assets to the lowest
granularity for which they retain unique business context or ownership. Below this level
of granularity functions that act on the assets become more utility in nature.

For example, a classification decomposition of the banks production systems that are
operated can be made to the level where individual systems are identified such as the
ATM network, contact center support application or the internal office network. Further
decomposition of these systems would start to identify their constituent processing
functional features. In many cases these features are not uniquely assignable to a single
responsible party in the enterprise’s organization.

Each of the example systems listed above is likely to include some function to
add/register some new entity (which would be a new ATM device, a customer servicing
position and an employee reference respectively for the listed examples). This ‘register
function is more of a utility feature common to all or at least most systems. Operating a
generic ‘entity registration function’ would not really be a uniquely assignable business
responsibility in the way that operating an ATM network is.

Comparing Operational Vs Utility re-use

The two different types of re-use are both important but apply in very different contexts.
The assignable role performed by a Service Domain — for example Customer
Relationship Management and Document Services (that handles the classification,
storage and distribution of important documents) represents a re-usable operational
capability. Operational re-use involves parts of the business using shared services
provided by other specialized business units to gain access to their capabilities.

The finer grained functions making up Service Domains that may include recurring
elements define reusable utilities. For example, a frequently performed product pricing
calculation can be implemented as standard software utility. This utility can then be built
into multiple product processing systems. It makes great sense to define and implement
standard solutions for commonly executed functions for consistency and to avoid
constantly re-writing code. But this is of course a different type of re-use:

BIAN 31

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

e Service Domains define discrete operational business capabilities that can be
assigned to a responsible party in the organization and reused by other parts of
the business as they undertake different business activities

o Utility functions define standard actions/behaviors that can be encoded in re-
useable code modules (using SW procedure libraries, micro-services etc.). The
deployed instances of utility functions execute completely independently of each
other

The important distinction between Service Domain operational capability reuse and
software utility reuse is revisited in more detail in later sections of this guide.

3.2.3 Service Domain Control Records

The combination of the generic artifact and asset type defines a Service Domain’s
“control record”. The control record specification is of particular interest as it comprises
the main business information governed by the Service Domain. It can contain a very
broad collection of information as it includes all the information needed to control
processing, any information that might be referenced and also any information that is
generated by the Service Domain as it completes a full cycle of its work.

An indication of the type of information that might be found in a control record is shown

with an example control record for the Party Authentication Service Domain that handles
confirming the identity of a customer.

BIAN 32

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network

BIAN Semantic API Practitioner Guide V8.1

The BIAN Control Record for the Party Authentication
Service Domain

Attribute CateLevel 1 Level2 Level3 Leveld Level5
CR Party Authe Party Authentication Assessment Instance Record
Customer Reference
Party Referance
Party Authentication Assessment Profile
Authentication Type
Party Authentication Consolidation Record
Customer Contact Authentication Level
BQ Password Instance Reco Password Instance Record
Authentication Reference Data Reference
Authentication Reference Data Type
Authentication Reference Data Value
Authentication Password Reference
Authentication Password Template
Authentication Password Stored Value
Authentication Password Valid From/To Date
Authentication Password Presented Value
Authentication Password Test Result
BQ Question Instance Recor Question Instance Record
Authentication Secret Question Reference
Authentication Secret Question Template
Authentication Secret Question Value
Secret Question Test Result
BQ Document Instance Rec(Document Instance Racord
Authentication Document Reference
Authentication Document Content
Decument Directory Entry Instance Reference
Document Content
Authentication Document Comparison Test Result
BQ Device Instance Record Device Instance Record
Authentication Device Reference
Authentication Device Property Value
Issued Device Instance Reference
Issued Device Property Valuz
Device Test Result
BQ Biometric Instance Record
Authentication Biometric Type
Authentication Biometric Record
Registered Biometric Instance Reference
Registered Blometric Instance Racord
Biometric Test Result
BO) Behavioral Instance Record
Authentication Behavioral Type
Authentication Behavioral Record
Registered Behavioral Instance Reference
Registered Behavioral Instance Record
Behavioral Test Result

Description

The authentication assessment combines the results of one or more tests to determine the level and authentication grant as
Referance to the customer as the authentication subject
Reference to the party or legal entity as the authentication subject
Details the types of authentication assessments that are combined into the overall evaluation
Reference to the different types of authentication assessment
The of the different results used in the authentication determination
The required value and value returned as a result of the authentication task, defining the level of identity assurance achieved -
Authentication using reference data and submitted passwords that are checked against records maintained by Issued Device
Reference to a customer reference data item to be compared with submitted value
Defines reference data item type submitted for comparison
The customer provided value is matched to the bank's maintained value
Referance to an issued password
Defines allowed values/format for an issued password
The bank maintained value {can be customer provided or a bank generated value - encryption applies)
The valid period for the stored password
The customer provided value is matched to the bank's maintained value
The result of the reference data and password chacks
Authentication using secret questions that are checked against maintained values
Reference to the selected secret question
Template includes the question text and provided customer response - given valug is compared to the stored value
This is the stored value, the provided value is compared to this
The result of the secret question check
Authentication by referenca to documents - typically ‘government issued’ that are kept on file
Reference to the decument and document type being presented for authentication
The submitted document content in any appropriate format/media (e.g. scan)
The document reference for the authentication document
The stored document - available in any suitable media for comparison
The result of comparing the presented document to the stored value
Authentication by device referance, covers all devices (2.g. card, key-fabs, key-pad)
Reference to the device being used for authentication
Property of the device being used to authenticate (=.g. phane number, URL)
Reference to the customer issued device
The registered customer device properties - maintained by SD-Issued Device Administration
The result of the device check
Authentication using biometric such as face recognition, signature
The type of biometric record being used for authentication
The biometric record submitted for authentication (e.g. face scan, fingerprint, signature)
The registered customer biometric record reference - maintained as an issued device instance
The registered customer biometric record - maintained by SD-Issued Device Administration
The result of the biometric check
Authentication based on detected and matched activity/behavior
The type of behavioral racard being used for authentication
The behavioral recerd submitted for authentication
Reference to the registered customer behavioral record
customer record - by SD-Issued Davice Administration
The result of the behavioral check

Figure 11 - Excel Extract of Service Domain Control Record

The BIAN standard provides initial control record information definitions for the Service
Domains that can be filtered and expanded in the context of a specific implementation
project. For those with object oriented design experience the control record can be

considered as a type of ‘class’.

3.2.4 Control Record Behavior Qualifiers

Early experience using the BIAN Service Domain’s service operations to access its
control record revealed that accessing the complete control record in a single service
exchange did not always define a sufficiently narrow business context or purpose for the
service operation to have an unambiguous definition (service operations are fully
described later in this section). For example, a service operation to ‘execute’ some
action against an active customer’s current account could have many different intended
uses in different business contexts with different results (e.g. to execute a payment from
the account or to execute a deposit into it). A further level of detail breakdown is

BIAN

33

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

therefore required for the control record so that the accessing service operations can
have a sufficiently singular/unique purpose.

In order to add this further level of detail BIAN uses ‘behavior qualifier types’to break
down the work performed by the Service Domain as captured in its control record. A
specific behavior qualifier type is defined for each functional pattern — the type defines
how the pattern of behavior can be subdivided into its finer grained activities. Most
important the behavior qualifier type retains the core behavioral characteristics of its
associated functional pattern. In essence the overall work done by a functional pattern is
made up of the collection of the same type of work done by its finer grained behavior
qualifiers - the BIAN behavior qualifier design actually implements a fractal pattern.

The behavior qualifier types used to break down each of the BIAN function patterns are
shown in the table:

The BIAN Functional Patterns, Generic Artifacts and Behavior Qualifier Types

DIRECT Strategy Goals Increase market share
MANAGE Management Plan Duties Relationship deve opment, Troubleshooting
ADMINISTER Administrative Plan Routines Time-sheet recording
DESIGN Specification Aspects Business requirements
DEVELOP Development Deliverables Functional modulespecifiation
PROCESS Procedure Worksteps Invoice generation
OPERATE Operating Session Functions Message capturefrouting
MAINTAIN Maintenance Arrangement Tasks Preventivemaintenance task
FULFILL Arrangement Features Current account standing order
TRANSACT Transaction Tasks/Steps FXpricing, market trade, clearing & settlement
ADVISE Advice Topics Tax advice, Corporate finance
MONITOR State Measures Compositeposition, Qustomer alert
TRACK Log Record Events Customer life event, Servicing event
CATALOG Directory Entry Properties Product pricing rules, Qustoner referencedetals
ENROLL Membership Clauses Qualificationmenbership purpose
AGREETERMS Agreement Terms & Conditions Required disclosures,
ASSESS Assessment Tests Password verification
ANALYSE Analysis Algorithms Average baance calculation, Propensityto buy
ALLOCATE Allocation Criteria Staff assignment, Facilityallocation

Figure 12 - Functional Pattern/Generic Artifacts and Behavior Qualifier Types

Though a single general behavior qualifier type is associated with each functional
pattern, the actual behavior qualifiers defined for a Service Domain will be
particular/specific to the Service Domain. For example, a Service Domain with the
functional pattern ‘process’ has the associated behavior qualifier type ‘work steps’. The
actual work steps defined for a ‘process’ Service Domain will reflect its own specific
business role. The work steps that make up the processing for the Customer Billing
Service Domain reflect how it processes a customer bill, i.e. : customer invoice

BIAN 34

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

generation; invoice transmission/dispatch; payment tracking; and, payment processing
work steps.

Currently BIAN only breaks down Service Domain control records to define the first level
of behavior qualifiers as part of the standard definition (a position that may be revised
with further deployment experience feedback). In the majority of cases this is sufficient to
define the payload of a discrete service operation unambiguously. For some Service
Domains with extensive information or functional content solution architects may find it
necessary to define additional levels of ‘sub-qualifiers’ that break the control record
down further to define suitably focused service operations. One example of possible
sub-qualifiers is shown for the Party Reference Data Directory Service Domain with its
functional pattern ‘catalog’, generic artifact ‘directory entry’ and behavior qualifier type
‘properties’.

The Service Domain Control Record is Broken Down Using the

Behavior Qualifier Type
Sub Qualifiers as defined by
users (site specific)

Reference/Features: Properties
relate to customer properties such
as SSN, Passport #, Date of Birth

Party Reference Data
Directory

Reference: Properties are general

Properties customer reference details

Associations: Properties detail the
customer's links and associations to
other parties of interest

Reference/Address: Properties
= relate to contact details such as

. home address, email, phone
Demographics: Properties cover s

demographic, employment and E

GlGETOTE R E 4 Referencel...: Properties TBD

Bank Relations: Properties capture
any bank to customer
links/relationships

Figure 13 - Party Reference Data Directory Control Record

Note that it is important that as the control record is broken down that the applicable
behavior qualifier type is applied consistently to define the sub-qualifier partitions and
that the partitions are defined to be discrete and mutually exclusive & collectively
exhaustive (MECE) at each level of decomposition.

3.2.5 Service Domain Service Operations & Action Terms
Every Service Domain offers a collection of service operations and usually consumes or

‘delegates’ by calling the service operations of other Service Domains as needed to
complete its work. Here we consider the Service Domain’s offered service operations.

BIAN 35

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

]
=

BIAN

Banking Industry

Architecture Network

BIAN Semantic API Practitioner Guide V8.1

BIAN has defined a general set of “actions terms” that characterize the purpose of an
offered service. The collection of action terms is intended to be non-overlapping and
collectively to cover all of the main types of service exchange that any Service Domain
might support. The current set of BIAN action terms is defined as follows:

Actions to
assign, set-up
and configure
aproduction
capability

Service
Domain
(PUT,POST)

Actions that
trigger the
generation ofa
new control
record
instance

(POST)

=
)
=
<
=
c
8
?
=

Actions that
act upon an
active control
record
instance(s)

Invocation
(PUT,PATCH)

ion)
xtract/subscri

be to
recporting

Reporting
(GET)

Activate

Configure
Feedback

Create
Initiate
Register
Evaluate
Provide
Update
Control

Exchange

Capture
Execute
Request
Grant
Retrieve
Notify

The BIAN Service Domain Action Terms

Assign/establish a production capability (applies to all
Service Domains

Change the operating p
— applies to and active i

Capture performance feedback. Note this can be at a
Service Domain, Control Record or lower level

for a servi

pability

Create a new strategy, plan, approach, or develop a new
design/model or solution

initiate a defined action: e.g. an operating session;
procedure; set up a facility; or, atransaction

Classify and capture details of an entity in a reference
directory

Perform an evaluation, including: a measurement;
test/check; and, an analysis (can be on-going)

Assign or allocate resources or facilities from an
inventory of available/tracked resources

Change the value of some (control record) properties

Request for the processing to perform in a specific way
e.g. block/suspend/skip/prioritise an action

Provide input into the handling of an instance, typically in
response to a question from processing

Capture transactional activity details against an instance:
e.g. log an event/action, record usage

Execute an automated/structured a task or action on an
established facility/control record instance

Request a task that involves

i isi kflow against an established

facility/instance
Seek authority/grant to perform an action or use a
resource that is overseen/governed by the SD

Return information/a report as requested

Provide details against a predefined/subscribed to
notification agreement

Only called to establish steady state working (rarely used)
The operational state may be re-configured typically to deal with
processing exceptions and operational problems

The term is used
feedback (no pr

| role)

itly to p! perational

ion/t

Several Service Domains are responsible for creating new
instances
Most frequently used to start a production service/task, both

jonal and back-offi pport in nature
Several reference ‘directories’ are maintained — for example
product, customer and employee related
A range of different types of evaluation are supported by different
patterns
Some resource pools are managed and assignments tracked (such
as staff and building facilities)

Most control record instances are subject to update

Many Service Domain’s control record processing may be
externally influenced e.g. wind-up, block/suspend, skip task

Many Service Domain’s control record processing may include key
external exchanges e.g. to reject/approve/verify

Some Service Domains support structured logs — for transaction
tracking and/or events for later analysis

Many automated tasks or actions may be initiated against active
instances

Many work requests may be applied to active instances (note these
usually involve customer/workforce exchanges)

A small number of specialised Service Domains provide some
form of permissions/authorization to acalling party

Formatted and unformatted information can be requested in a wide
range of situations (note there is no state change)

Service Domains may subscribe to information updates in a wide
range of protocols/formats (for ial ali it)

Figure 14 - Action Terms with Definition and Examples

Those familiar with the BIAN standard will note that the action terms have undergone
some minor revisions and additions since the Service Landscape Version 7.0 release.
This is based on early feedback from members implementing the BIAN Semantic APIs.
The changes have been required better to align the BIAN service operations to REST
end point specifications as described in more detail later in this guide.

BIAN

36

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

As can be seen in the table the BIAN action terms can be grouped in four main
categories:

1. Those that act on/influence the operation of the Service Domain overall as a
service center (action terms: activate/configure/feedback)

2. Those that result in the creation of a new control record instance, i.e. trigger a
new life-cycle (action terms: create/initiate/register/evaluate/provide)

3. Those that act on an existing control record instance — typically invoking some
function and/or changing/updating its state in some way (action terms:
update/control/exchange/capture/execute/request/grant)

4. Those that obtain or subscribe to information updates for one or more control
record instances. Importantly these actions do not change the state of the
instance in any way (action terms: retrieve/notify) — Note: making this distinction
is intended in part to help with Command Query Responsibility Segregation
(CQRS) type deployments

BIAN defines the service operation to indicate a service dependency between the
Service Domains — it does not presume any specific choreography/protocol for the
exchange. So for example in implementation the service exchange could be a one-way
flow of information or an instruction, perhaps with some simple acknowledgement of
receipt. It could be a complex iterative dialogue as the request is refined based on
interim exchanged details. Furthermore, the response could be immediate or there could
be a significant delay requiring either or both the caller and provider to monitor for the
response. The BIAN service operation also only details the exchange of information
(which can include instructions and responses) but does not track the actual movement
of physical items other than by implicit descriptions (such as the movement of physical
currency or the deployment of resources).

Default Service Operations

When defining the service operations for the Service Domains BIAN has discovered in
practice that there are sensible combinations of actions terms that apply for different
functional patterns. For the 19 functional patterns and 17 action terms BIAN currently
defines a default set of service operations. These are simply the defaults and it is
possible that they do not all apply in some deployments or that there are practical
situations where additional service operations are required that do not correspond to the
defaults. The mapping is simply a starting point for architects to consider and is also
used to define the service operations reflected in the BIAN Semantic API Portal.

BIAN 37

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

Default Service Operations by Functional Pattern

©
o @ z 5 ©] w w M
5 & Bz & & E = = S X 4 wew 8 o i
8 2 2 2 5 § g EE 2 2 § g g 2 EE o § Five types of Control Record
= = w z i i
g £ 5 a @ g g 2@ g 2 g F g & < E a % El Archetype are instantiated
1 - Create — records that represent
G 1 1 1 1 1 1 I ¥ F | | 1 | BB g that is created suchas a
1 | ‘configurel [N I N NN N N N N I I 11 e
] Feedback ’
Create 2 - Initiate — a defined process or
Initiate 1 1] 1] |

action that is initiated (repeating)
Register

Evaluate - - -
Provide

Update
Control AN N N N NN N N N N N N N B B . auation performed on an entity
Exchiange | I I (N N I N I I - I | (measurement, condition, test,
capture | [N I I I 1 | B naysis)

Execute 1 1 1 1 1 I 1 |

Request " [N [N NN [N N U U N D N (O N 5 — Provide — allocation typically
Grant | | 1 | | from a managed inventory of some
Retrieve | NN NN NN (N N (N [[O N N N N MW eniity

ooy | 4 1 1 1 1 1 | | 71 1 J | /] /]|

Control Record
Instantiation

3 - Register — a catalogue/directory
of entities

4 — Evaluate — some form of

Control Record
Invocation

:Im
sg
82
&

Figure 15 - Default Action Terms

A few interesting patterns can be seen in the default mappings that are worth a brief
mention:

1. The action terms that control the overall Service Domain (activate, configure and
feedback) apply not surprisingly to all Service Domains regardless of their
functional pattern

2. Only one of the five action terms that result in the creation of a new control
record instance applies to any one functional pattern. Again this is not surprising,
but the nature of the control record instance archetype created is rather different
for each of the five applicable action terms (as highlighted and described in the
diagram)

3. Of the actions terms that act on an active control record (or a subordinate
behavior qualifier) instance, most can apply for all functional patterns with just a
few obvious exceptions

4. The retrieve and notify action terms also unsurprisingly apply in all cases
regardless of the functional pattern. Note that the retrieve and notify action terms
can be applied at the Service Domain level as well as the control record and

behavior qualifier level as necessary to obtain different types of information
extract/report

Sometimes it can seem that the same action term results in a fundamentally different
response from different Service Domains. Though action terms are indeed consistent in
their application, the apparent variation to the response is because Service Domains
have very different underlying operational characteristics. An example that compares the

BIAN 38

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

response to the initiate and execute action terms for a Service Domain with a fulfillment
functional pattern and one with a processing functional pattern is presented as
Attachment A to this guide to demonstrate this.

Service Operation Specifications

The actual service operation specifications for a Service Domain in the current release of
the standard are defined using the applicable action term and optionally a behavior
gualifier. Each service operation’s payload is specified as an organized list of sematic
attributes covering the key business information provided and returned for the service
exchange. The precise format as applied for the BIAN Semantic APls compliant to the
REST architectural style is set out in more detail later in this section.

Note: in earlier releases of the BIAN Standard the Service Domain service operations
were defined with four attribute types (Identifiers, Depiction, Instructors & Analysis). This
structure has since been replaced with the more practical and comprehensive format
used for the BIAN Semantic APIs.

3.2.6 Service Domain First Order Connections

The first order connections for a Service Domain capture any identified service
connections required between it and both calling and called Service Domains. Each first
order connection defines a service dependency between a single calling and called
Service Domain that uses one available service operation (i.e. one action term and if
appropriate one behavior qualifier).

A Service Domain’s list of first order connections as captured in the BIAN standard will
not necessarily ever be complete as the connections are discovered empirically by
modelling business activity. It is likely that some viable business behaviors may not be
fully anticipated. The known first order connections are useful for architects as they
reveal the connections required to handle different business requirements and can help
understand the overall scope/purpose of the Service Domain and provide the business
context for its offered services.

First order connections can be associated with a (first order) business event. The event
defines the external trigger that causes a call to the Service Domain’s offered services.
Many different Service Domains may call the same offered Service and each of these
associations represents its own first order connection and associated business event.
For example, many different Service Domains may request a customer’s Current
Account balance using the same ‘retrieve’ service operation offered by the Current
Account Service Domain. But each call will be for their own specific purpose and each
defines a first order connection.

BIAN 39

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

In order to process a service request or in the course of its own internally scheduled
activity the called Service Domain will also typically need to delegate actions, i.e. call on
the services of other Service Domains. The first order connections capture both the
offered and delegated service operation exchanges for the Service Domain. No formal
link or association between an offered service and any dependency on delegated
service calls is maintained however as this would contradict the foundational SOA
principle of encapsulation.

Note: first order connections are used to assemble the BIAN business scenarios and
wireframe views that are described later in this section. BIAN strives to capture all first
order connections for Service Domains in the standard model as they are discovered
through different requirement modelling efforts.

The practical exceptions where it is useful to model second order or ‘nested’ service
exchanges are for Service Domains that need to perform their respective roles
concurrently. This is the case for the Service Domains that handle customer interactions
with the bank as shown in the example:

An Example of ‘nested’ service exchanges

BIAN Business Senario: Customer Initiated Case

Bank

Advanced Voij .
3 Party Session oy Qurrent
Sawi%ens [Coma)t }-mdl% [Authenticaion] Didogue] [Semung Qde'] TSt] [stlorre' Gsse] []

Q The customer calls into the
contract center and a contact
Dials info fhe benk is initiated.

Sewce coner ,ﬂ‘%‘;ﬂ Q The customer authenticates
uslomer's cenity with a password
@ Q The customer initiates aself
i ateroone service session.
Sewion Selecta senci Q The customer selects a
‘roceaUre. disputed charge processing
Zm[em servicing order
'_’|\ S .
. Q Recent transaction history is
i obtained from their cument
account to identify the
Initiate case sing for transaction
s [
sedion w‘gm; the dispued tansaction Q The customer then requests
‘_‘7““’%_ "conced that a customer case is
cond raised to handle the disputed

transaction... (case
processing not shown)

1stLevel

o 2nd Lievel
<
<

P: 3¢ Level

Figure 16 - A Business Scenario with Nested Service Exchanges

BIAN 40

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

As can be seen in the business scenario, the Advanced Voice Services Service

Operations Domain (that operates the PABX) calls the Contact Handler Service Domain
that calls the Session Dialogue Service Domain, that itself calls Servicing Order Service

Domain to process the customer’s request. As a result of their integrated start/end
dependencies there are three levels of nesting required in the scenario.

3.2.7 Service Domain Information Profile

The control record instances already described contain the primary information of
interest for developers that is maintained by the Service Domain. Control record
instances are typically accessed by the service operations for most transactional
business activity. The Information Profile however describes the complete make-up of
the business information governed by any Service Domain when implemented as a
stand-alone service center. The information profile make-up is:

¢ information used in the control and management of the Service Domain as a
service center including local copies of referenced information,
accessed/delegated service details, resource administration, service domain
activity and performance records and offered service definition and service
configuration settings

e collective views and analyses of the collection/portfolio of control record
instances including, usage, performance and historical analysis as might be
required

e the content of individual control record instances, further broken down using
behavior qualifiers as necessary.

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

41

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The Information Profile at the top level

Service Reference/Name

Servicing Unit Budget & Organization
Servicing Unit Resource & Activity Plans

Unit Activity & Performance Analysis Reports

Service Domain

Resource Plans &
Activity Records

® Reference Data Sources and Update Schedule
® Reference Data
® Reference DataUsage

® Service Definitions
® Service Configuration & Status
® Service Access and Usage Records

Work Space Records

Control Record
® Control Record Portfolio Analysis & Reporting

Control Record ® |ndividual Control Record Content
® Artifact Reference Details
Control Record ® Set-up/Parameters

® Transaction/Activity Records
Control Record

Figure 17 - The Information Profile — Top Level with Content Descriptions

As noted when the control record is broken down using the behavior qualifier type, the
resulting partitions have the same characteristics as their parent partition — it in essence
applies a fractal pattern. The property is particularly useful as it means the action term
for a service operation is applied consistently to the control record, a behavior qualifier
partition or any further sub-qualifier partitions. The use of the behavior qualifier type
provides a mechanism for adding increasing precision in terms of defining the scope of
the referenced information within the control record.

BIAN 42

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The Service Domain embeds business information in a Fractal Pattern

Service Domain

Resource Plans &
Activity Records

Work Space Records

-)_ﬂol Record |
tﬂol Record

Figure 18 - The Fractal Nature of the Information Profile

Assigned Records

At this stage BIAN has defined Service Domain specific descriptions of the make-up of
the control records with their individual behavior qualifiers. This is the current focus for
the BIAN membership because it defines the payload of the service operations most
widely used in the API specifications for transactional banking activity. For completeness
BIAN has also provided general descriptions/checklists for the type of information that
can be anticipated covering the operational control and activity/performance analysis of
the Service Domain that is used in more general management and control. All of the
information definitions are semantic and subject to the following qualifications and
limitations:

e Only Covers Mainstream Behavior — the information definitions relate to the
prevailing mainstream functions performed by the Service Domain — they are
intended to be indicative such that they support an unambiguous definition of the
core role/purpose of the Service Domain and its service operation exchanges.
They do not attempt to be exhaustive for example covering regional variations or
more advanced/specialized distinctions. Furthermore, all activity considered is
‘happy path’ so error processing and exceptions are not generally considered

e Only Provide High Level Semantic Definitions — BIAN is a business

architecture level conceptual specification and as such its information attributes
are defined using fairly high-level semantic descriptions. In some cases, the level

BIAN 43

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

of detail provided gets close to implementation level granularity. But in most
areas the attributes defined by BIAN need to be related to more detailed
information structures and definitions by the architect/developer. For example,
BIAN might define an ‘account statement’ with properties such as ‘period
covered’ and ‘types of transaction included’. This is unambiguous in terms of the
business requirement, but clearly far from a detailed specification of a physical
statement report as might be printed off by an application

BIAN’s Descriptive Definitions differ from Standard Data Formats — The
BIAN information attributes are defined in semantic/descriptive terms, BIAN does
not provide a formal data definition. This is important to ensure that the BIAN
specification is implementation agnostic — i.e. the BIAN information attribute can
be mapped to any appropriate data representation. Consider for example the
BIAN information attribute ‘customer reference’. This defines an attribute that
provides some unique reference to a bank customer — an information concept
that can be consistently interpreted. How that reference is subsequently realized
in any specific implementation’s data standard is not defined. An industry
standard such as some variation of the IBAN code could be used or the
developer might define their own unique bank specific customer key

Mapping to 1SO20022 & Other Standards — BIAN'’s policy is not to develop
competing content with other prevailing industry standards. The current focus for
BIAN is to map its semantic information attributes to the 1ISO20022 Business
Model. Given that the scope of the ISO model is hot complete in some areas
covered BIAN has to define its own conceptual object model and map this to
1ISO20022. BIAN will also map to other existing standards as appropriate.

At this time the BIAN specification comprises three related information
descriptions:

o the Service Domain Information Model comprises the semantic attributes
that make up the Service Domains’ information profile — primarily the
control record definition;

o the BIAN Business Vocabulary provides descriptions of the different
information attributes (adopting industry accepted definitions where
available); and

o the BIAN Business Object Model maps the information attributes to the
conceptual business objects for definitional consistency

As noted in an earlier section of this document (Section 2.5) the encapsulation property
of Service Domains results in two overlapping views of business information — the first a
higher-level conceptual information vocabulary that is passed as the payload of service

BIAN 44

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

operations. Second the potentially far more detailed processing logic and data schema
used in the internal working of the Service Domains. The focus for the BIAN standard is
on addressing the first view: to define the business information that is shared through
service operation exchanges between the Service Domains.

The goal of the BIAN Information Model specifications and the underlying Business
Vocabulary and BIAN Business Object Model (BOM) is to provide a complete and
consistent set of definitions at a level of detail where mappings to implementation level
data standards and physical specifications can be done unambiguously and consistently.
This is a major undertaking not least because of gaps and limitations in existing
information/data standards across the industry.

BIAN will continually add detail and coverage to an appropriate level based on practical
experience. In the interim architects and developers should expect that available

semantic information definitions are only indicative and in many cases will be limited to
high level/generic descriptions.

3.2.8 The Figure “8” Diagram

To conclude this section covering the description of Service Domain design, its main
properties are:

The BIAN Service Landscape contains all currently identified Service Domains

Service Domain properties: BIAN Service Landscape The Periodic Table o

. . . L Elements
& a discrete business functional partition (not a process step)

& peercollection covers all business activity (elemental)

& acts as an operational service center

& can combine people, procedures & systems

& capable of being outsourced (one ‘sizing’test)

¢ does ‘something’to ‘something’for the full life-cycle

¢ handles single or multiple instances forashort orlong life-span

{ BIANBervice ¢
Domain

Key Properties of all Service Domains

Figure 19 - Service Domain Key Properties

BIAN 45

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

[

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

Though the operational characteristics of Service Domains span a very broad range,
they all have the same basic design pattern — they each do something to something from
start to finish as often as is required.

The way the many different BIAN design artifacts just described all link together to
provide the overall Service Domain specification is captured in the BIAN ‘figure 8’
diagram shown below. Architects and developers will not normally need to reference
most of these detailed artifacts for the Service Domains and service operations they use.
These detailed design artifacts are used within BIAN to generate the semantic API
specifications that provide the high level service operation descriptions that can be found
on the BIAN Semantic API Portal.

The Figure 8 Diagram links the Design Elements

BIAN Service
Domain
Functional
Patterns

Asset Types

Control Record

Behavior

Action Terms Qualifiers

Service
Operations

Figure 20 — The Figure “8” Diagram

3.3 BIAN Business Scenarios

To help explain the business role/purpose of the Service Domains BIAN provides
various design artifacts that provide examples of their use. The first of these artifacts is
the BIAN Business Scenario. A BIAN Business Scenario models the handling of a single

BIAN 46

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

business requirement or event rather like a conventional business process. A business
scenario is an archetypal illustration of a possible set of service interactions that might
occur between a collection of Service Domains as they handle the event. A BIAN
business scenario has the following properties:

e Bounded - It should have a clearly defined business goal/objective with an
associated start and ending position

e Meaningful - It includes sufficient content in terms of the Service Domains and
their service operation exchanges to represent a coherent example of business
activity for a business practitioner to review

e Non-Prescriptive — It presents a sensible sequence/flow of interactions as an
archetypal flow but this sequence and the thresholds/triggers for service
exchanges are not mandatory, just viable examples

e Loose Coupled - though the scenario may read as a linked sequence of
exchanges, this serial coupling is not imposed. A service link shown between two
Service Domains in the scenario simply indicates that a service dependency
exists between them in the context if this business event— how and when this
exchange is implemented and any start/end dependencies are not defined

o Non-exhaustive — a scenario does not attempt to define all required/possible
service exchanges. Its intent is to clarify some specific role/behavior of the
selected Service Domains by providing an example. For this reason, it is usual
when defining business activity in an area of interest to use a collection of
several overlapping business scenarios.

¢ Non-redundant — once a specific exchange pattern has been captured in one
scenario within a collection this pattern can be excluded from the other scenarios
for simplicity (it can be cross referenced if needed to avoid confusion)

Properties that can be captured in a business scenario but that are generally avoided for
clarity include:

e Conditional and Multi-path Flows — most business scenarios will not include
conditional/multi-path flows. If there are different options to be defined these
usually are better captured as multiple scenarios within the overall collection

e Second Order Exchanges — most business scenarios limit the ‘nesting’ of
dependent service calls (i.e. where a called Service Domain is shown to depend
on it making a further delegated service call to be able to respond). Nesting
technically breaches the fundamental principles of encapsulation in service
oriented design. But there are situations, particularly when modelling real-time
customer interactions, where these properties need to be shown for practical
implementation purposes as already described.

The business scenario model is effective as a discussion mechanism to define and
agree requirements with business practitioners. Also to clarify the specific roles of

BIAN 47

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Service Domains and their service exchanges for developers, helping them establish the
functional partitioning intended.

Business Scenarios have many similarities with a conventional process model. In the
table below the earlier mortgage application example has been redrawn to show one
viable sequence of interactions in a BIAN Business Scenario. The format is similar to a
more traditional process model with the involved Service Domains identified as the key
actors in each column. The key difference as noted is that the sequence of exchanges is
not tightly coupled in the scenario — exchanges can be triggered as and when and there
is no assumed start/end dependency implied in the scenario.

Mortgage application captured as a BIAN business scenario

BIAN Business Senario: Customer Mortgage Application

Bank

Party Reference Product COredit Collateral Asset it Document
[Q‘swr"er cﬂe’] Deta Directory. birectory | | Administration | | Administration | | Y9Sn9 covms | |[FOUEERRLED

The customer and bank have
agreed to process the mortgage
application. Available customer
reference data is obtained and
the Product Directory
referenced to see what the offer
processing requirements are.
The customer's current bank
credit assessment is obtained.
Retngve m@aﬁﬁs ent
T >
Next the details of the property
being mortgaged are captured,
C ; including the current vauation
Create a new collateral (includes valuation) :.
The gathered details are used
to obtain an undenwriting
@ decision
Transfer funds fm the mal ‘account b the new facility
T »|
The offer and all other related
qR documents are classified and
Set s he underying transacion new curent_acoount ity recorded in the document
:. archive
Q Finally the mortgage facility is
nitate a fithdrawal Train curggit account :. initialized
i
H
H

Figure 21 - Example Mortgage Business Scenario

Some aspects to highlight from the example:

e The involved Service Domains (the yellow/orange boxes) each have their own
dedicated column. The archetypal service exchange flow runs from top to bottom

BIAN 48

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

e The vertical blue box indicates the duration the Service Domain is active in the
scenario

e The horizontal arrows indicate a service exchange/dependency between the
Service Domains. The arrow points to the called Service Domain (i.e. the one
providing the service that has been delegated to by the calling Service Domain)

e Acircle at the calling end of the arrow indicates that the exchange represents
both the call and the response (as is the case for all exchanges in this example —
more complex scenarios can include nesting of calls with the response coming
later in the service flow — see Figurel6 earlier in this Section)

e The purple ellipse on a service exchange arrow includes the service operation’s
‘Action Term’ — this property is fully described later — in essence the action term
characterizes the nature of the service call (This notation can also include an
additional behavior qualifier field when applicable)

e The service exchange text describes the purpose of the interaction in general
terms in the context of this scenario

e The narrative in the column on the right outlines the overall flow of the processing
from start to finish

When developing a new systems solution or mapping to one or more legacy systems, a
collection of Business Scenarios is used with each addressing some particular event or
business requirement of interest. As a guide fifteen to twenty Business Scenarios might
be defined to cover the key requirements of a targeted business area (such as payments
processing or customer servicing) though clearly the required number of scenarios
greatly depends on the scope and complexity of the application design.

3.4 BIAN Wireframe

The BIAN Wireframe shows the available (first order) service connections between a
related collection of Service Domains. A Service Domain may make use of more than
one of the services offered by another Service Domain. (For example requesting a
specific action be performed or simply retrieving status information from the same
Service Domain).

A wireframe is rather like a city map that shows the allowed service connection
‘pathways’ connecting the Service Domains. A business scenario is then one example of
a journey that traverses this map using its particular service connections/paths.

A business scenario is referred to as a ‘dynamic’ model view because it details the
behaviors/actions taken over time for some event. The BAIN Wireframe conversely is a
‘static’ model view of the Service Domains as it depicts their persistent available
connections regardless of any timing or specific event/activity.

BIAN 49

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

The diagram below is a simple wireframe perspective for the mortgage application
scenario described earlier

As in the business scenario, the yellow/orange boxes are the Service Domains, the

The business scenario reorganized as a simple wireframe

BIAN Business Senario: Customer Mortgage Application

Customer
Offer

¥

Reference
Directory

Product
Directory

Credit

Collateral

5
& S
=
2
S

Asset
Administratio

0O Q @ Q

Underwriting

)
ug

) (
§
g

Figure 22 - Simple Wireframe for the Mortgage Application Scenario

arrows indicate a service connection (pointing to the service provider from the caller) and
the purple ellipses indicate the nature of the service exchange (referencing the
associated “action term”).

Just as a collection of Business Scenarios is typically used to capture the main
processing/event requirements for an area of interest. A wireframe is typically

assembled including all of the Service Domains and service connections used in the

same collection of Business Scenarios. Some additional connections and/or ‘boundary’
Service Domains can be added to round out the wireframe where helpful.

The key properties of the BIAN wireframe

When a wireframe is assembled for a broad collection of Business Scenarios it can
become quite complex. Arranging the Service Domains to avoid too many crossed

Non-exhaustive — the wireframe only needs to show available service

connections that are used in the associated collection of business scenarios

(some versions may show additional, even all available service connections, but

these typically become too unwieldy)

Arbitrary Scope — the selection of Service Domains and associated connections
is informal. If it is necessary to add or suppress connections and or
include/exclude Service Domains to clarify a particular viewpoint this is permitted

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

50

BIAN

BIAN Semantic API Practitioner Guide V8.1

pathways can be a challenge and often it is necessary to strike a balance between
including all required service connections and ensuring the readability of the diagram. As
an example, the wireframe below covers general customer servicing activities. The
specific Service Domains involved in the mortgage offer business scenario have been
highlighted.
The customer servicing wireframe with the mortgage offer process
highlighted

VA

Reference
Advanced rectory Transaction - Fraud
\oice Svs Op: Authorization Detection

s}
C Party Deta
MEEgEED Document
Channel Channel Services
Activity Activity

Analysis Hstory]C Location Deta

o)

O

00

Management

Credit
o oonat (HTE Y Card Copture Collatera
C_ | Routng iR ™ Alocation
: Compliance Menagement

V)

B

N
4 Underwriting
Session Prospect - Qustomer J Mortgage Position
Dialogue Management Offer 'L Loan Keeping
C Qustomer
Correspon-
Servicing Qustomer Agreement dmge
Event Hstory Event Hstory
C Qustomer
Profoile
Sales Product
Agreement
CQustomer
3 Access
Entitlement
C Product
Directory
TP et
Authentication
CQustomer
(¢ Product/Service]
Hligibility

Figure 23 - Customer Servicing Wireframe with Mortgage Scenario Highlighted

For more complex projects a collection of wireframes can be used highlighting different
areas and aspects of the development.

Combined scenario and wireframe views clarify the components for development
Having both the dynamic (business scenario) and static (wireframe) models of the area
of interest is useful to fully understand the service-centered design for the technical
leads and architects. In systems development the business scenario is important to

confirm key business requirements are supported in a manner quite similar to process
oriented design. The Wireframe then defines a stable blueprint over which the scope of

BIAN 51

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

existing or to-be-developed applications can be mapped with the Service Domains
corresponding to major functional partitions of the application.

With this overlay on the wireframe it is possible to map the interfaces that can be
supported by API's between applications and the main internal exchanges within an
application. This use of the wireframe is expanded on considering different technical
environments later in this guide.

3.5 BIAN Semantic APIs (REST Mapping and the BIAN Semantic API Portal)

The BIAN standard is by choice implementation agnostic. But in order to support the use
of the BIAN Service Domain partitions and service operations as a framework for
container based architectures and the more general use of application program
interfaces (APIs) the BIAN definition has been mapped to the REST architecture style.
REST is the most popular approach being used for API development in the banking
industry at this time.

For the purpose of mapping APIs to BIAN the assumption is made that the BIAN Service
Domain matches the application boundary (the “A”) of the API. The Service Domain’s
service operations then make up the collection of program interfaces (the “PI’s) that
complete the API's description. In BIAN terms a semantic API consists of the collection
of service operations offered by a Service Domain with the service operation
specifications formatted in a manner that is suited for developer enhancement/extension
(for example adding bank implementation specific reference attributes) for
implementation in the REST architecture style.

Representational State Transfer (REST) has been developed specifically for creating
Web services. It defines specific constraints that are intended both to ensure
interoperability and efficient performance for applications communicating over the
Internet. The REST approach provides access to ‘resources’ using a predefined set of
stateless operations (stateless meaning that no client information is persisted at the
service provider between service requests). The resource is identified with a URI and the
service request will result in a response that returns values relating to the resource in the
service payload. This payload can be presented in various formats — JSON being the
most common (HTML and XML being popular alternatives). HTTP is the most common
protocol used for the service request operations with the particular HTTP methods GET,
PUT, POST, (PATCH) and DELETE being applied in the BIAN mapping.

REST Architectural Constraints

REST defines six constraints for compliance. The ways these relate to the BIAN design
approach is summarized as follows:

BIAN 52

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

1. Client-Server Architecture: separation of concerns (no assumed link between
client and server data) — BIAN Service Domains can fully conform to a client-
server architecture in implementation

2. Statelessness: no client context is stored on the server — though implementation
agnostic, BIAN Service Domains support SOA design principles which can
conform to statelessness where practical

3. Cacheability: responses can support caching (handles sequential responses
sensibly and responses are re-useable) — again as BIAN is intended to support
SOA design principles, selective cacheability can be fully supported in
implementation

4. Layered System: the client has no awareness of intermediary layers between it
and the host — as BIAN conforms to SOA design principles, encapsulation in
particular, this constraint can readily be handled in implementation

5. Code on Demand: the response can embed executable logic — BIAN does not
preclude that service exchanges can include executable logic, this typically being
an implementation consideration for front-end applications

6. Uniform Interface: comprises four more specific constraints: resource
identification in request; manipulation through representations, self-descriptive
messages, Hypermedia as the engine of application state —“HATEOAS”) — BIAN
service operation definitions do not constrain the adoption of any of these service
implementation features as might be appropriate

In summary the BIAN standard is a conceptual business model that defines service
exchanges in semantic terms in a manner that is implementation and therefore also
vendor agnostic. The supposition is that BIAN specifications will usually be deployed
using service oriented architectural (SOA) approaches — BIAN specifically represents
business activity with this goal in mind. SOA concepts in general align well with the
constrains imposed by the REST architectural style and are not incompatible with a
REST implementation in any significant way.

REST Archetypes

In the BIAN to REST mapping a Service Domain control record instance essentially
represents the accessed resource. REST defines four resource archetypes (documents,
collections, store and controller). To ensure the Service Domain control record is
correctly interpreted it helps to align the different BIAN generic artifact types for the
functional patterns to these four REST archetypes:

BIAN 53

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The REST archetypes for reference can be defined as follows:

o Documents — a singular resource concept. It is referenced using a
conventional hierarchical naming structure:
e.g. http://api.example.com/building-management/office-buildings/{building-
Id}
The state representation typically combines feature values of the instance

o Collections —represents a managed/directory collection of resources. The
collection determines when to create a new resource instance on request.
e.g. http://api.example.com/building-management/office-buildings

e Store — a client managed resource repository — it does not create new
resource instances but enables a collection:
e.g. http://api.example.com/cart-management/users/{id}/carts

e Controller — this resource handles a procedural concept. It acts like an
executable function with parameters and inputs/outputs
e.g. http://api.example.com/cart-management/users/{id}/cart/checkout

The different BIAN generic artifact types that define the control record make-up can be

mapped to these archetypes as follows (note that only three of the four REST resource

archetypes are actually needed for the mapping):

Functional Pattern Generic Artifacts Matched to the RESTArchetype

DIRECT Strategy Document http://api.example.com/enterprize-management/responsibilities/{strategy-ld}
MANAGE Management Plan Document http://api.example.com/business-management/responsibilities/{management-plan-ld}
ADMINISTER Administrative Pan Document http://api.example.com/administration-management/responsibilities/{aministrative-plan-d}
DESIGN Specification Document http://api.example.com/model-design/customer-models/{model-Id}
DEVELOP Development Project Document http://api.example.com/application-development/retail -projects/{ project-Id}
PROCESS Procedure Controller http://api.example.com/back-office/payments/customer-billing
OPERATE QOperating Session Controller http://api.example.com/production/ATM-networ k/operation
MAINTAIN Maintenance Arrangement Controller http://api.example.com/systems/computer/{id}/maintenance
FULFILL Fulfillment Arrangement Controller http://api.example.com/consumer-products/current-account/{id}/arrangement
TRANSACT Transaction Controller http://api.example.com/whol esale-products/equity-trade/{id}/transaction
ADVISE Advice Controller http://api.example.com/whol esale-products/cor por ate-finance/{id}/advice
MONITOR Sate Controller http://api.example.com/customer-relations/{id}/state
TRACK Log Controller http://api.example.com/customer-relations/{id}/customer-history/log
CATALOG Directory Entry Collections http://api.example.com/products-and-services/{id}/product-specifications
ENROLL Membership Collections http://api.example.com/syndicated-loans/syndicate-members
AGREE TERMS Agreement Document http://api.example.com/customer-relations/{id}/{agreement-ld}
ASSESS Assessment Document http://api.example.com/products-and-services/{id}/{assessment-Id}
ANALYSE Analysis Document http://api.example.com/customer-relations/{id}/profitability-analysis{analysis-id}
ALLOCATE Allocation Document http://api.example.com/issued-devices/device-type/{id}/{allocation-Id}

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

54

BIAN

BIAN Semantic API Practitioner Guide V8.1

Figure 24 - REST Archetype mapping to BIAN Generic Artifact

Note the mapping of control record to REST archetype simply confirms that the BIAN
Service Domain control record construct can be treated as a resource when accessed
using the REST architectural style.

Service Operation to Endpoint Alignment

An obvious challenge when mapping BIAN to the REST form arises because the BIAN
specification includes extensive references to actions and behaviors whereas the REST
architectural style by definition exchanges only the accessed resource’s feature and
state information. In order to align to REST the BIAN service operation action terms that
characterize the expected service response have been converted to their noun form. In
this way the action is redefined as the result or outcome from the action being performed
that can then be treated more readily as properties of a resource. The action terms and

their amended forms when applied to REST endpoints are as follows:

Activate becomes Activation

Configure becomes Configuration

Feedback remains as Feedback

Create becomes Creation

Initiate becomes Initiation

Register becomes Registration

Evaluate becomes Evaluation

Provide becomes Provision

Update remains as Update

Control remains as Control

Exchange remains as Exchange

Capture remains as Capture

Execute becomes Execution

Request becomes Requisition

Grant remainsas Grant

Retrieve maps directly to the HTTP GET method
Notify is not currently used in the BIAN mapping

To define BIAN Semantic APIs each default BIAN Service Domain service operation is
matched to a ‘REST endpoint’ description. The scope/purpose of each individual BIAN
Service Operation and its associated REST endpoint description is defined by three
concerns:

BIAN 55

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

e The Service Domain’s core functionality — the most obvious consideration is
the core business function performed by the accessed Service Domain itself.
This functionality is best characterized by the Service Domain’s control record.
The service operation should be considered to act upon an identified control
record instance (or instances) or some sub-partition of the instance

e The service operation action term — the action term refines the service
definition by characterizing the particular purpose for engaging the accessed
Service Domain. It results in access to and possibly updates to the attributes of
the referenced control record instance (for example to update, exchange or
retrieve information). Based on the action term the attributes of the resource
(control record) are filtered to select those required for the input and output
messages

e Optionally the Behavior Qualifier — is used to narrow the reference to a sub-
partition of the referenced control record instance. As described earlier the
behavior qualifier type is used to partition the control record into sub-partitions of
equivalent operational properties to the ‘parent’ control record (for example a
procedure is decomposed into its constituent work steps). Then as before, based
on the selected action term the attributes of the resource, in this case the control
record behavior qualifier partition, are filtered to select those attributes required
for the input and output messages

BIAN Endpoint descriptions are far from implementation specifications

BIAN is an implementation agnostic conceptual specification. As a result, and as
already described, BIAN only seeks to define Service Domains and their service
operations to a particular level of detail. The level of detail is intended to be sufficient
such that a user can switch between two service providers that both conform to the BIAN
specification without significantly destabilizing up and down-stream business
dependencies.

The BIAN Service Domain service operation descriptions that can be found on the BIAN
Semantic API Portal are formatted to look like a REST endpoint specification only to
ease their adoption by developers familiar with the REST architecture style. It is
important for developers to recognize early on that these semantic descriptions are
some way from implementation level specifications. The BIAN semantic endpoint
definitions provide an unambiguous ‘classification’ or description of a business exchange
that can be consistently implemented using the REST architectural style. To complete
the physical implementation design a developer needs to add significant content as
follows:

BIAN 56

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

The exchange may need to be further decomposed to finer grained
endpoints to handle subordinate activities needed to support a practical
orchestration/choreography for the interaction. This includes exchanges
that might be needed to handle optional/advanced features, errors and
exception handling

Detail and content must be added to the sematic attributes to develop the
complete physical data specification for the message payload (mapped to
existing host systems’data structures and/or applicable message data
standards as necessary)

Additional attributes for operational/communication purposes (e.g. the
message header, security/error handling, message indexing/numbering
etc.)

Standard design and development approaches and techniques are well defined for

handling the above requirements. Any suitable combination of these approaches can be
employed as appropriate for a specific implementation project to complete the REST

endpoint physical implementation specifications.

The BIAN designs do not define implementation level detail. Actual implementation

examples provided to BIAN by members are already and will continue to be reviewed to
ratify and extend the BIAN semantic definitions where necessary. Examples of selected

practical implementations may also be made available in the future. This reference
implementation material will help in the adoption of BIAN by providing re-useable
compliant development content.

The BIAN Semantic APIs are available on the BIAN API portal that is an open source
site accessible through https://portal.bian.org/. The format of the endpoints as defined for

the BIAN Service Domain APIs uses the following format:

The Layout of the REST Endpoint is Assembled from the Control Record

Business Objects
Qualifiers

(Optional) Reference, Configuration & Transactional Data

Concatenation? \

Request Payload

Sub

/ ! Freferencef{bq-reference-id}/address{sg-reference-id}/execution
Response Payload

Figure 25 - BIAN API End Point Format

Note that the option to add sub-qualifiers is shown in the diagram. As noted earlier BIAN
currently only defines behavior qualifiers to the first level decomposition and in many

cases an implementation may need to add these additional levels of detail.

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

At the time of publication BIAN has developed Semantic API definitions for over 140
Service Domains. Additional definitions are being developed and constantly released to
the portal. It is hoped that most development projects can already be supported by the
Service Domains specifications currently available. The available coverage and plans for
future delivery can be confirmed by accessing the Semantic APl initiative on the BIAN
website and if necessary contacting BIAN management directly.

The BIAN URLSs provide a starting point for classifying and naming end points. Prefixes
or postfixes can be used to link to mapped systems, version numbers etc. The adopted
naming convention should be designed to facilitate searching through a service catalog.
For example, sorting/filtering by host service domain can help with service identification.

3.6 Service Domain Event Triggering (Proposed design extension)

All of the design artifacts described in this Section to this point have been or are
scheduled to support definition of the BIAN Service Domains. For more advanced
service oriented architectures different ‘orchestration’ approaches can be considered for
the developed applications.

In more conventional SOA implementations the service centers define discrete
capabilities and the processing of business requirements/events is achieved through
overlaying orchestration logic that coordinates the service calls between service
domains. In this kind of implementation, the main benefit of service oriented design is
that the operational capabilities are re-used. But the execution is limited to the pre-
defined paths and new/changed behaviors typically require additional development
effort. An alternative orchestration approach is one that is fully event driven.

In an event driven SOA the Service Domains have encoded dependencies that enable
them to automatically ‘react’ between themselves to support any business requirement.
When some business action or requirement updates the status of one Service Domain a
series of events is triggered between related Service Domains so that each performs
whatever actions are needed on their own behalf to fully address the business action.

In an event driven model the source business action results in an asynchronous cascade
of triggered service exchanges that continue until all Service Domains reach a stable
state reflecting the completion of all the necessary processing and updates required to
fully handle the business action.

Sometimes the Service Domain state changes may need to be synchronized to take
account of related start/end dependencies between the Service Domains. Other times
the Service Domains can catch up in their own time (because the resulting actions and
changes in their internal state does not impact any other Service Domain directly).

BIAN 58

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

There are several design properties that need to be reflected in the Service Domain
specifications to support a fully event driven design. Some example considerations are
(in no specific order):

BIAN

Semantic Vocabulary Agreed to Required Precision — all exchanged
semantic information must be defined as specific changes to the value of this
information will often be a service triggering factor

State Management & Service Triggering — comprehensive event profiles for
the Service Domains and their service triggering logic. This should include
configuring thresholds and policies. These can be linked to key information
attributes or with control record and control record partitions as defined by the
behavior qualifier type

Service Operation Agreements and Policies — this includes more detailed
service make-up definitions, including cross-referencing the policies and
thresholds governing/triggering service exchanges as well as the required
service performance, information integrity and security control features
Transactional, Control, and Referential Exchanges — the required Service
Domain information exchanges need to capture all transactional business
activity, management command and control interactions and the background
synchronization of shared reference information

Defensive Operations — the Service Domain service operation implementation
must always handle delayed/erroneous requests and respond in a
graceful/defensive manner

Exchanges must be Idempotent and Commutative — the Service Domains
must handle duplicate exchanges and tolerate that any business event may
result in parallel threads of activity that can complete in different relative
sequences based on prevailing physical conditions

Utilities and Middleware — to provide core Service Domain utilities such as a
general service directory, data storage and management, transaction logging,
data analysis and reporting, transaction assurance and state/trigger handling

Routing/Communication Capabilities — to be able to discover and establish all

required Service Domain connections with support for the associated message
gueue and event capabilities

59

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

To support an event driven model the current Service Domain information profile
definitions will need to be extended to a lower level of detail and two additional
properties will need to be built into the BIAN Service Domain standard:

1. Service Domain Events — a comprehensive definition of the state transitions
and associated internal and external event triggers for the Service Domain. The
events need to be defined at several levels:

for the overall operation of the Service Domain itself,
for combined views of control record instances,
individual control record instances, and

behavior qualifier instances as appropriate, also
potentially for selected individual attributes

coooTp

2. Service Domain Referential Dependencies — covers the patterns of access to
information governed by one Service Domain that is referenced in the operation
of other Service Domains. Note: this is not information that is exchanged in the
usual course of transactional service exchanges, but is more likely to be
exchanged and synchronized as a background activity through notification based
service arrangements

BIAN will be coordinating with members to explore these requirements and the outcome
will be reflected in later releases of this guide if necessary.

BIAN 60

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Section Summary

This section sets out the BIAN artifacts in sufficient detail for developers to reference the
key properties behind the designs. Technical leads and architects are not expected to
learn or become proficient in applying these specifications directly. Their primary source
of design input is the BIAN Semantic API Portal and selected example BIAN business
scenarios and wireframes that might relate to their specific development projects.

The BIAN artifact descriptions and explanations included in this section can be used by
technical leads and architects to review the semantic API definitions, to determine how
they have been defined where there may still be ambiguities in their meaning. They may
also need to refer to some design artifacts if they wish to propose corrections and or
extensions to the BIAN specification.

The artifact descriptions also provide a more general grounding in the BIAN approach for
those that are interested to learn more.

BIAN 61

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

4 — Implementation Approaches

Note: —BIAN has only recently published its semantic APl extended
specifications. It is early to define robust and comprehensive implementation
adoption approaches. The emerging insights and techniques presented in this
section are subject to revision as more practical experience is obtained.

This final section describes how the component based BIAN Semantic APIs can be
applied in development projects. Two main factors determine the context for a
development project in this guide. The first is whether the target application addresses a
back office, transaction processing type function or whether it supports a front office
decision support and customer interaction type function. The second factor is whether
the application adopts a conventional monolithic process oriented technical architecture
or a more advanced container based, service oriented technical architecture. For the
purposes of this guide the term monolithic indicates that the application employs a
central shared/integrated database to support its application processing logic.

Technical
Approach

Component/ T . Decision Support
Container Based and Exceptions and Customer
SOA Processing Interaction

Applications A pplications

Monolithic Product
Process Oriented - Self Service/Automatic
Architecture TransaCtllon Fulfillment Applications
Processing
Applications
Area of
Focus
Back-Office Front-Office
Product Fulfilment Customer Interaction

& Decisioning

Figure 26 - Four Quadrants two Dimensions

BIAN 62

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

As highlighted in the diagram most development projects will fall into two of the four
guadrants shown. Back office transaction processing systems tend to adopt process
centric designs and front office decision support systems can increasingly benefit most
from container based service oriented designs. The approaches described here will
focus on these two pairings. There is nothing to prevent developers from mixing and
matching techniques as may be appropriate for their specific situation as the techniques
are typically not incompatible.

In addition to different development contexts, some techniques are more relevant for
‘green field’ development and others apply where there is some degree of existing
application re-purposing and/or integration. In practice most projects will combine both
some legacy wrapping/repurposing and new development in varying proportions.
Process oriented back office transaction processing developments typically include a
greater portion of legacy repurposing. Conversely, most green field development
opportunities will arise in the front office/container based application quadrant

The implementation approach covered by this final section of the guide is covered in
three parts.

1 - Key Properties of Component Design — clarifies the key implications of
adopting a component architecture for consideration by technical leads and
architects. These include the application of component partitions, considerations
for information governance and interfacing/communications approaches

2 - Adding Detail to the BIAN Service Domain Specifications — guidelines for
interpreting and extending BIAN’s high level semantic conceptual requirements
down to physical implementation specifications. This describes the content and
required additions at three levels: — conceptual requirements, logical designs and
physical specifications

3 - Implementation Approaches — detailing some identified approaches to
configuring physical designs that leverage the component model of business.
This is an initial list of some possible physical configurations that are intended to
address performance considerations and other issues. This list will hopefully be
augmented as BIAN members provide feedback from actual deployment projects
in the future.

4.1 Key Properties of Component Design

Component based design and development provides additional insights that can
complement traditional process based designs. A component perspective allows the
solution designer to define an application architecture that leverages specific component
properties. In practice when dealing with legacy application in particular, architects may

BIAN 63

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

need to deal with hybrid views that mix both process and component viewpoints, but for
simplicity the properties of a pure component design are described here. These
properties are described from three perspectives:

1. Components & The Main Driver for Componentization — discrete component
based business functions support systematic operational capability re-use

2. Information architecture — contrasting component and process information
handling approaches. An opportunity to improve information governance

3. Communications — components support standardizing and re-using service
based interfaces

Each sub-section ends with a brief list of the main component related development
considerations differentiating between those that apply specifically to back office process
oriented versus front office container oriented developments. Note: that in this section
the component concepts are described as they relate to a solution design regardless of
whether the focus is on green field development or legacy renewal projects.

4.1.1 Components & The Main Driver for Componentization

Components define business functional building blocks, each representing the capacity
to perform a specific business need. Any business application requirement can be
supported by an appropriate collection of suitable functional components. As already
described BIAN has applied specific design techniques to define a comprehensive and
discrete set of discrete canonical business functional partitions particularly suited to a
service oriented architecture (SOA). An architect should equate the BIAN Service
Domain conceptual business functional components to major application functional
modules. Where each Service Domain offers a collection of services associated with
supporting a particular business capability.

When correctly designed BIAN Service Domain aligned solutions can be assembled to
collaborate in any desired sequence and combination to support most banking activities.
The discrete service centers can be engaged in many different business contexts
supporting a very high degree of operational reuse as first described in Section 3.2.2.

The given example of operational reuse was a shared document handling service. It
represents a specialized business function that provides services to capture, classify,
verify, maintain and provide controlled distribution and access to documents. The
example demonstrates how operational re-use is achieved when an enterprise
establishes discrete specialized business capabilities that can be performance optimized
and then shared across the enterprise. This enhances business effectiveness, flexibility
and can reduce operational redundancy.

BIAN 64

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Operational reuse is not to be confused with the more conventional code-based utility
re-use — where similar processing logic can be encoded and re-used. With utility re-use
an often repeated functional requirement can be implemented using a programmed
solution that is ‘packaged’ for repeated deployment. Utility re-use is highly desirable as it
results in greater processing and information consistency and eliminated software
development effort. But its benefits lie primarily in the code development productivity and
quality of the application software.

Experienced technical leads and architects will be familiar with the potential savings from
software utility reuse. The opportunities from operational reuse are less obvious but no
less significant. The diagram below includes a simple schematic of a stand-alone
consumer loan application on the left. A sample of its constituent service center
components has been overlain (this is an informal selection of components only). On the
right a consumer insurance application is also shown. The diagram shows the service
center components that could be re-used and those that are likely to be unique to each
application (i.e. have limited potential for operational for re-use).

Stand-alone applications have a high level of operational redundancy...
A Stand-alone Consumer

A Consumer
Loans System Property Insurance System
Consurer Loans Consurer Insurance
Service Qonfiguration g 03? Service Configuration
= sS.Q
- : Components >
Transaction Processing b u i |t fO r th e pu— Transaction Processing
first system could gg% o | ==
bereusedin -
Operational Services ; a the second Fo
a
e Accounting 2 \

C

“ Transaction Log
alm
80-90% is reusable — as little as 10-20% represents a uniquefun

Figure 27 - Example of a Stand-alone Application and Operational Reuse

The example is typical of most stand-alone business applications - 80% or more of the
application logic found in most can be a candidate for operational re-use when correctly
engineered using a component design.

General Development Benefits:

BIAN 65

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Contrasting component design with more traditional process/monolithic designs with
their more arbitrary partitions, a component based architecture has some general
benefits:

e Clear partition boundaries to define and assign responsibility for discrete
functional modules

o Defines elemental capabilities that simplify the selection and
integration/assembly of solution modules/components

e Support for localized specialization/optimization of individual components (this
can include their technical/architectural features)

e Support for different sourcing options for solution components

Benefits for Back Office Process Oriented Developments:

Components can be ‘hard wired’ together for back office transaction processing to
ensure throughput performance. Components then operate as a more tightly coupled
factory processing platform. Benefits from component insights/partitions include:

¢ |dentifying boundaries and opportunities for batching/scheduling/decoupling
linked activities along the production transaction processing flow

¢ Load balancing processing activities between component partitions
Developing standard external access/reporting interfaces for information
requests from outside the main transaction stream (these service requests would
be aligned to the matched Service Domain operational services)

The patterns of connections are likely to be fairly stable and so connections can be more
permanent in nature with limited disruption — service enablement has only limited
application in the back office generally.

Benefits for Front Office Container Oriented Developments:

Components can be service enabled for the more interactive and decision support
related activities found in the front office. The component architecture supports the
development or applications that work as a loose coupled collaborative network. Key
benefits from component insights include:

e Support for effective operational reuse of front office business functions
Supporting the ability to implement flexible combinations of business activities for
different operating/business models

e Ability to engineer and optimize multiple concurrent asynchronous processing
interactions and exchanges between front office activities

BIAN 66

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

4.1.2 Information Architecture - Contrasting Component & Process Approaches

The most significant difference between a component based and the more traditional
process oriented application design is the way the business information is handled within
the application. This is particularly the case with the specific design approach BIAN has
used to define the Service Domains — the asset leverage model as described earlier in
this guide.

The Service Domain Component Information Architecture

With the asset leverage model as already described, each BIAN Service Domain has a
standard structure — it applies a specific pattern of behavior or control (functional pattern)
to instances of some type of asset for the complete lifecycle, every time the business
requires it to do so. For example, the Service Domain Customer Relationship
Management applies the ‘management’ control pattern to instances of a ‘customer
relationship’ (an intangible asset) for the duration of their relationship with the bank and it
does so for every bank customer.

The component design adopted by BIAN has a number of implications for a Service
Domain’s information management:

o Persistence — the BIAN Service Domain defines a persistent business capability
with its associated information store (database) — it may be active or inactive at
any point in time, but it can always be available to respond to external service
requests and typically also executes its own internal schedule of actions

e Fully Encapsulated/Autonomous — because the Service Domain is responsible
for the complete life cycle operation of its business role it consequently governs
all of the associated business logic and information required to perform its
responsibilities for its complete lifespan.

e Discrete/Non-overlapping — each Service Domain is defined to perform a single
discrete and unique business function. It may delegate actions through service
calls to other specialized Service Domains. But the Service Domain is
accountable for the outcome of all delegated tasks and the interpretation of any
returned information.

As a result of these design properties all enterprise business information can be

uniguely assigned to a single governing Service Domain where it is maintained for
its complete lifespan. The information exchanged through service operations provides

BIAN 67

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

the values/status details of information governed by one Service Domain that can be
interpreted and applied to information governed by another. But each Service Domain
maintains its own complete and independent information viewpoint and is responsible for
the integrity of its own governed information.

An example highlights component based information governance

Consider how the home address details maintained for a bank customer may be
referenced in many different business contexts. The governing Service Domain
for this information is the Party Reference Data Directory Service Domain. In this
case its governing responsibilities could include verifying the accuracy of the
value provided (is it a real residential address? does the customer actually live
there?) and ensuring that it is kept up-to date (has the customer moved or has
their accommodation status changed in any way?). The Service Domain does not
only have to maintain the information value but also must be able to qualify the
integrity of the information when its value is provided to any other Service
Domain. This is so that the calling Service Domain is able to determine whether
the provided value is fit for its own specific business purposes.

This service dependency/arrangement can be clarified using some example
references made to the customer’s home address as governed by the Party
Reference Data Directory Service Domain and made available to others by
calling its offered ‘retrieve’ service operation:

e Correspondence —the Correspondence Service Domain needs to
determine the address to send bank missives — this can include a mailing
address (and other media locations such as email, a cell phone number
for texts etc.). It may determine that the residential address value
provided is good enough to use for its mailing address. Though it may
adopt the same address value, the mailing address is in fact a different
business information concept. For example, Correspondence may allow a
customer to define a temporary mailing address (say when they are away
on holiday) that would override the referenced home address value for a
period.

e Customer Agreements — the Customer Agreements Service Domain
needs to determine the legal residency (address) that it applies to the
jurisdiction of contracts it holds with the customer. It may use their given
residential address as the initial value for its research. But in most cases
it will need to perform additional checks to adequately verify their
residency status (such as requesting additional documentary proof)

BIAN 68

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

e Collections — the Collections Service Domain may need to retrieve
collateral against a failed loan. For this it could need to provide the last
known location details for the collateral to a 3rd party collections agency.
It could simply use the customer’s reference home address held on file.
But given the sensitivity it should probably verify that this is the most up to
date version by requesting that the value is checked/refreshed before
passing it on

e Current Account — the Current Account Service Domain may need to
refer to the customer’s home address to print on issued checks as a
customer reference. The value of their home address maintained on file is
likely to be completely adequate for use as their printed check owner’s
address information.

The different references clarify that even when several Service Domains maintain
information that has a common data type/form (e.g. an address) and may have
the same value at any point in time that the business context and purpose for the
information is unique for each Service Domain. A Service Domain must
determine whether it is appropriate to use the value for an attribute governed by
another Service Domain for its own purposes.

The fact that a Service Domain is responsible for the full lifespan governance of the
information is important to underscore — as noted every Service Domain handles the
control pattern applied to the asset instance from start to end. As a result, it must
handle/oversee the initial capture/verification, maintenance/updates, support any
reference to and then undertake final deletion/archiving of all of its governed business
information.

When implemented effectively the BIAN component approach can support the definition
of a common business language across the enterprise. Furthermore, the business
information and information exchanges are defined within an explicit business context.
This is provided by the business definition of the governing Service Domain and the
particular interpretation of the shared information applied by any calling Service Domain.

The Process Information Architecture

The process information architecture differs significantly from the component information
architecture. The process view captures a dynamic business event that occurs at some
point in time. It details a linked sequence of associated tasks that are triggered in a
dependent series. There are typically a finite number of allowed paths through a process
based system to take account of different processing variations and optional steps, but
these are limited to keep things manageable. The end-to-end processing logic is
supported by a shared database that provides access to any business information that is

BIAN 69

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

created, referenced, or updated (and archived/deleted) throughout the event’s
processing.

Though the collection of business information closely matches the scope of information
used in the equivalent component model view, the process model imposes no specific
organizing mechanism to reconcile where the lifespan governance of the information is
handled. In the process model an inventory of all accessed information is made and a
database design created to optimize the way this information can be accessed
throughout the specific processing patterns supported by the application.

In some cases, it might be obvious where some information is most sensibly sourced
from an external facility where it is managed collectively for all users (such as a central
customer information file — “CIF”). But in a monolithic process oriented implementation
much of its information will be maintained independently in its local integrated and
purpose optimized database.

In the process model the database design is typically optimized for the way the
information is accessed within the process

Central Customer
Information File

Shared Database
— 3

Customer Application
Product Specific Collateral &
Details Documents
Product
Agreement
Details

Mortgage loan
application
Gather customer
& loan details
Negotiate and
agree terms

eeeeeee

Abandon Check credit
Application worthiness

Establish loan &
disburse funds

Review Product
Jerms/Selection

Complete Loan

Application

Figure 28 - Database Related to the Process Model View

Due to the complexity of most banking application portfolios it is extremely difficult to
trace the shared information dependencies between applications. Other than shared
central information such as the CIF there will probably be limited opportunity to identify
and synchronize with other users of the same business information handled in
applications elsewhere. This leads to inevitable business information duplication and
fragmentation.

BIAN 70

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The table below shows how the process model accessed business information can be
mapped to the Service Domains that would be needed to handle the same business
event.

Comparing the information referenced through the process to its life-cycle as it would
be if governed by the Service Domains

KEY: Eﬁ; ﬁ

0 o= S

Q- ==
- Update -

a - (Delete)

I-"l:u-;nlnur
_ppicatien)

Figure 29 - Process CRUD linked to Service Domain Information Governance

The list below considers how the process mapped information is accessed and where
appropriate considers the better governance opportunities that can arise when a
component oriented design is applied (with life-cycle Create/Read/Update/Delete access
indicated):

Customer Data Management (R,U) — it is likely that the process application will
access a central customer information file (CIF) for some customer data, but it
may augment this with additional locally managed information specific to the
mortgage offer if the CIF content is limited. In a component design the customer
reference data should comprehensive and support any retrieve and update
requests that are made during the offer process

Product Directory (R) — it is less likely that a central directory detailing the
specification of all products in a standard format is available and so the process

BIAN 7

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

application is likely to embed its own local version of the mortgage product
features within the offer process — such as pricing, eligibility and required
documentation. In the component design there is a single place to go to maintain
all product specifications (the Product Directory Service Domain) — when the
product specifications are replicated and fragmented across multiple processing
application they are clearly much harder to maintain

Customer Offer Processing (C,R,U) — as noted with the previous product
directory comment, mortgage product specific offer requirements are likely to be
built into the process application. This will result in duplicated offer processing
logic for different products. With a service based product directory that can store
the different product offer requirements it would be possible to build a single
reusable generic offer process capability that configures its actions according to
the selected product. It interesting to note that the process application handles
the complete lifecycle of the offer information in this example (D-delete can
perhaps be thought of as the archiving of the completed offer) — The scope of the
process function maps most closely to the associated customer offer processing
component

Credit Administration (R) — this is likely to be an established shared service in
most banks, hopefully with a well-designed interface that enables its easy
integration with the process application. In this case it maps directly with the
component design

Collateral Asset Administration (C,R,U) — it is less likely that a general
purpose collateral administration service is available and so mortgage specific
collateral handling is likely to be built into the process application. This will make
it harder to assemble a consolidated view of the customer’s collateral position
across multiple products

Underwriting Decision (C) — this like credit administration will hopefully be an
established external service that can be sensibly interfaced with the process
application. This is another case where the process view is likely to match the
component design

Document Services (C) — this is a good candidate for a shared service
capability. For most banks however the initial investment required to establish a
documents services unit can be prohibitive and each process oriented application
ends up keeping track of any documents required and created in isolation for the
specific product it supports. The resulting fragmentation is a significant cause for
errors and inefficient processing. For example, annoying repeated requests for
the same documents being made to customers

BIAN 72

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Mortgage Fulfillment (C) — the offer process simply initiates the set-up of the
new mortgage when appropriate in this example. It is most likely this is done by
contacting a separate mortgage fulfillment application. Much of the information
gathered throughout the offer process needs to transferred as the new product is
initiated

As the examples clarify, the practice of building a local, high performance process
oriented databases can result in fragmentation of the enterprise’s business information.
It is arguably one of the primary sources of complexity in legacy application portfolios
with widely overlapping process solutions. The component design can highlight the
business information governance requirements clarifying where information is best
created and maintained through its lifespan.

Contrasting the Potentially Conflicting Issues of Performance and Consistency

The component based and process information architectures both have specific
strengths and weaknesses. Many of these may be leveraged or mitigated with different
application design and implementation techniques. At the conceptual level the
differentiating properties are:

e Component Information Architecture Strengths

o all business information governance is uniquely assignable to a single
responsible business entity

o the business context for information is well defined. Avoiding the incorrect
inference that similar types of information used in different business
situations must always share the same information value

o the complete life-cycle of the information can be managed, ensuring
appropriate action can be taken to maintain the integrity and currency of
the information throughout its usage

o Component Information Architecture Weaknesses
o providing access to singularly governed information introduces the
potential for delay/latency and possible access limitations/constraints
(during information updates in particular).

e Process Information Architecture Strengths
o business information is defined to support the processing logic precisely
o business information can be structured to ensure highly efficient access
throughout the process
o common enterprise reference business information can be easily
duplicated and integrated where available

e Process Information Architecture Weakness

BIAN 73

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

o local business information views fragment the overall enterprise model
and can lead to extensive processing and data inconsistencies
o designs may not be readily adaptive to changes and enhancements

Benefits for Back Office Process Oriented Developments:

The process information model is most likely to suit the back office where information
access performance can be optimized. The stability of the links and boundaries between
processing applications and the narrow focus of the information they reference mean
that reconciling local and shared views of the business information can generally be
handled within the monolithic information architecture.

The component governance model may be useful to help reconcile common information
associations between applications to limit the process and information fragmentation in
legacy applications. Furthermore, as processes are subject to change and commercial
solutions may wish to support different process configurations, a component design can
provide greater stability over time and be more flexible to meet different processing
arrangements

Benefits for Front Office Container Oriented Developments:

The component information model is most likely to suit the front office. A far wider range
of information sources and services are likely to be accessed. The governed information
model supports the flexibility to make connections when needed and in any combination.
As the exchanged information is managed autonomously by each Service Domain its
integrity can be assured as necessary. Clear information context, definitions and
properties can also ensure that exchanged information values are correctly interpreted
across the business.

4.1.3 Communications — Component Support for Standard Services

The BIAN standard has been expressly defined to support the adoption of a standards
based service oriented architecture (SOA). There are two features of the Service
Domain specifications to highlight in this regard:

o BIAN Service Domains define discrete and elemental business capabilities
¢ BIAN Service Domains handle the full life cycle occurrences of their specific role

As a result, the BIAN standard can be used to define a comprehensive and non-
overlapping set of service exchanges covering all banking activity to a certain level of
specification detail. Furthermore, as the Service Domains and their associated service
operations are canonical (consistently interpreted across all implementations) — the

BIAN 74

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

resulting underlying service exchange specifications can also be applied as an industry
standard.

In contrast, for monolithic process type applications the communication interfaces
between applications are more likely to be point to point (i.e. unique and dedicated to
each application to application exchange). Each interface will usually need to handle
specific features imposed by both involved applications. When building new application
interfaces developers usually attempt to re-use existing interfaces to minimize
development effort. In practice however, other than for the most utility types of
exchange, the required adaptations and enhancements often result in the definition of a
new (and overlapping in terms of repeated capability and content) interface.

The proliferation of overlapping point to point interfaces is another factor that contributes
to the complexity and severe fragmentation found in most banks’ application portfolios.
When a component architecture is established it is possible to start ‘standardizing’
exchanges by implementing standard services and service based communications.

The BIAN Service Operations are High Level Specifications

The Service Domain and service operation definitions are presented at a conceptual
level and described in semantic terms. What is intended from the level of detail provided
is that the nature or purpose of the service exchange can be consistently interpreted
between deployments.

The intention is that a bank or solution provider that aligns to the overall BIAN model can
switch out the provider of a service for an alternate service provider without destabilizing
other aspects of their business operation. For example, a bank that makes use of an
external service provider to provide credit reports on individuals should be able to switch
to another compliant service provider without having to rework their entire customer
management function.

It should be expected that in switching between service suppliers there will be some low
level interfacing and mapping work to do to re-establish the physical connection, but the
key business information and service requirements should be supported. Finding the
right level of detail for the BIAN semantic specifications is a practical challenge and
something that has to be refined in practice:

When BIAN Specifications are too high level — the precise business purpose for
aservice exchange is ambiguous and service subscribers switching between
providers will find that processing anomalies permeate beyond the immediate
service interface and might start to destabilize other aspects of their business

BIAN 75

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

When BIAN Specifications are too detailed — the specifications will impose
processing constraints and requirements that restrict service providers’ ability to
conform to the standard. In addition, with overly specific service definitions,
service providers may not always be able to cleanly align their services to the
corresponding BIAN service

Finding the right level requires judgement and is likely to be something that improves
based on practical experience. The two specific features of the BIAN standard listed
above are intended to facilitate this.

In addition to providing high-level business application designs, the Service Domains
can be used to structure organizational and operational aspects of the enterprise. The
discrete role of a Service Domain can be used to define a specialist operational business
function/service that can be assigned to a particular organizational unit and provide
shared services across the geographic layout of the enterprise.

BIAN Service Domains Defines Discrete and Elemental Capabilities

Each Service Domain performs a unique and discrete business purpose. The scope of
the service Domain is also defined at a level where this business purpose is elemental in
nature, meaning that it can only be adopted in its entirety.

As a result, the service operations that access any one Service Domain have a very
clear and concise business purpose that can’t be confused with the role of any other
Service Domain — there should be only “one place to go”. The associated types of
information and actions that can be accessed by the service operation should be readily
associated with the Service Domain based on its specific business role.

The business role of the Service Domain is also best characterized by its control record.
As a result, any offered service should also be directly relatable to the control record in
terms of accessing its governed information or invoking some associated function that it
handles.

BIAN Service Domains Handle the Full Lifecycle of Their Role
Because every Service Domain handles is specific business role from end to end, a
standard collection of service operation types can be defined to handle all associated

states and reporting perspectives. The ‘action terms’ defined by BIAN characterize the
different types of service operations that can access any Service Domain.

BIAN 76

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Furthermore, as described earlier in Section 3.2.4, the BIAN design breaks down the
Service Domain’s control record into constituent parts using behavior qualifier types.
This mechanism is used to ensure that the same action term can be consistently applied
to the Service Domain’s control record in its entirety or on some sub-partition of it. This
sub partitioning provides increasing focus as might be required to isolate a more specific
service requirement.

General Development Benefits
The general communications related benefits from a component architecture include:

e Service Domains define the discrete and assignable sources and consumers of
service operations

e Service Domains define a clearly bounded scope of specialized business activity
to narrowly define the meaning of all associated offered services

e The Service Domain’s control record (and its behavior qualifier based sub-
partitions) defines the governance context for all exchanged business
information, ensuring overall information integrity

Benefits for Back Office Process Oriented Developments:

The component architecture defines standard service boundaries between components
that can be implemented as high performance point to point interfaces if needed to
support the main transaction flow.

Standard services can be also used to provide structured reporting access to the back
office applications, in particular to support the information extracts made to the front
office applications. The use of standard reporting extracts based on component designs
is a key tool that can be applied in legacy application re-purposing.

Benefits for Front Office Container Oriented Developments:
The component model is specifically suited to the service enabled operations of loose

coupled front office applications. The component model is a critical enabler for
implementing an effective service oriented architecture (SOA).

BIAN 77

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

4.2 Adding Implementation Detail

The BIAN standard defies the mainstream functions and exchanged business
information at the level of conceptual requirements. These high level specifications need
to be expanded to much finer levels of detail to support development projects. Three
standard levels are considered:

Conceptual Requirements — is the main level at which the BIAN standard is
pitched — defining the business operational functions in a component architecture

Logical Designs — some of which are partially defined within the BIAN standard
consider different implementation approaches and options

Physical Specifications — details the code logic and data needed to implement
the designs in practice (only very limited insights are provided in this guide at this
time)

In this section guidelines are provided as to how to interpret the BIAN standard content
and extend it as necessary down to implementation level physical specifications.

4.2.1 Conceptual Requirements

It is worth noting that the conceptual Service Domains do not actually represent the top
level of a complete enterprise business design. Business planners/strategists can exploit
an additional layer or perspective above the conceptual Service Domain partitions. This
layer defines the ‘value view’ of the business. It details different business interactions
and motivations (that can invoke the Service Domains when appropriate) and associates
business value creation and more general business performance measures with the
outcomes.

The business value layer can be leveraged for a broad range strategic planning and
enterprise investment decisioning activities. BIAN’s work developing its Business
Capability Model is intended to link the BIAN Service Domains into the business value
analysis layer (this on-going work can be reviewed at BIAN.org).

For most BIAN users and technical leads and architects in particular the less abstract
business functions performed by the BIAN Service Domains and defined at the
conceptual level provide the best entry point. The BIAN Service Domains each represent
the capacity a business can possess to perform a specific and discrete business
function. The Service Domains can be treated as the major building blocks for
assembling banking application designs. At the conceptual level the Service Domains
define this capacity in terms of the business requirements it addresses — i.e. ‘what’ the

BIAN 78

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Service Domain should be able to do without stipulating in any way ‘how’ the Service
Domain might perform this function.

For architects reviewing the Service Domain definitions at the conceptual level the goal
is to identify discrete functional partitions that can correspond to major functional
modules in their target application development. Because of the Service Domain designs
these functional partitions can be implemented as autonomous container based service
centers when appropriate.

As noted earlier in this guide (Section 2.1) the motivation for adopting Service Domain
partitions is that it results in a modular/component application architecture with key
properties that include briefly:

1. Defines components that support operational re-use — each Service Domain
matches a discrete business function. It encapsulates its business information
and logic such that it can be implemented and deployed as a reusable
operational service provider. (Note that only 20% of the BIAN Service Landscape
covers product specific processing with limited potential for operational re-use.
The remainder represents highly reusable cross product operational activities)

2. Supports incremental development and adoption — Service Domains define
what is done, not how it is done internally. When properly engineered an aligned
application can be developed and adopted incrementally across the enterprise.

3. Canonical specifications — BIAN Service Domains define generic functional
building blocks that make up any bank. Aligned industry solutions should be
interchangeable hopefully with only limited and localized mapping/reworking.

BIAN conceptual Service Domains definitions can optionally be combined with selected
BIAN business scenarios and wireframes to provide example business context. Together
this clarifies the purpose and boundary of the Service Domains to provide a robust
definition of major partitions that can be reflected in the application design to support a
component implementation. The key insights the solution designer should take from the
conceptual Service Domains as they set out the overall structure of their application
design include:

The core business role/function supported by each Service Domain partition

e The type of business information the Service Domain governs

e Representative service operations offered as major application partition
interfaces

¢ From associated scenarios and wireframes an indication of any delegated
service dependencies

BIAN 79

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

As stated, at the conceptual level solution architects/designers should be aware that the
BIAN requirement descriptions are limited:

e They only describe general/mainstream requirements,

e They do not address errors and exception conditions

e They do not consider any non-functional properties such as performance and
security

Conceptual Business Information and 1SO20022 Mapping

The information governed by the Service Domain is presented in semantic terms and
defined at a conceptual level. The provided name and descriptions of the information
attributes are intended to be representative and intentionally avoid any implementation
specific formats (other than as examples). For example, an attribute might refer to a
“product instance reference” meaning that the attribute should uniquely identify a
particular occurrence of an in-force product. The name and description avoids
suggesting any specific naming convention or format for the information attribute as this
is considered to be implementation specific.

BIAN attempts to match its Service Domain information attributes to existing industry
conceptual object models. Currently the dominant prevailing standard is the 1ISO20022
Business Model. Where possible BIAN currently maps its semantic attributes to the ISO
model, but due to gaps and misalignments it has been necessary for BIAN to maintain
its own intermediate Conceptual Business Object Model (the BIAN BOM).

Conceptual Requirements Level Summary

The BIAN conceptual designs are intended only to provide sufficient detail that aligned
developments will adopt standard application modules/boundaries that support
component based development and improve general interoperability. Where appropriate
the component based application designs are highly suited to the adoption of SOA
implementation approaches.

The mapping to the industry standard ISO20022 Business Model is intended to assist
with the consistent interpretation of the business information. This recognizes the current
practical limitations in the available industry standard information specifications.

4.2.2 Logical Designs

The logical designs provide the next level of definition. In essence they address the
‘how’ underlying the Service Domain’s conceptual requirements. At this level the solution
architect can expect to add significant detail to the Service Domain descriptions. The
logical designs will quickly start to include site or implementation specific details as the

BIAN 80

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

descriptions are extended. BIAN lists general guides for logical design options that can
be adopted, but avoids defining extensive detail in order to remain implementation
independent. Before describing the different aspects of the logical design that can be
applied, the BIAN technique of Service Domain ‘externalization’ is explained.

Externalization

As frequently described already the role of a Service Domain is to apply a pattern of
behavior to instances of a specific asset type for the complete life-cycle. This cycle
defines the Service Domains functional scope of responsibility. The state of the subject it
acts on as it completes this cycle is tracked using the control record and this holds the
key business information governed by the Service Domain. In fulfilling its core business
function, a Service Domain will almost always need to access the specialist functionality
(and the associated business information) handled by many other Service Domains.
Defining the correct boundary between a Service Domain’s own responsibilities and
those that it ‘delegates’ to other Service Domains through service calls is called
‘externalization’.

Determining when functionality or business information belongs within a Service Domain
or should be external and accessed by delegated service calls is critical to ensure that
Service Domains remain discrete/non-overlapping and that they are elemental in their
business role (as described in more detail in Section 3.2.). Applying this design
consideration is a key aspect of the work performed by the BIAN Working Groups that
define and ratify the published BIAN Service Domain designs.

Revisiting the externalization decisions underlying a Service Domain can be useful for
technical leads and architects to better understand its business role and can also help
when mapping Service Domain partitions to legacy applications. Determining whether a
function or associated business information is contained within a Service Domain or
should be ‘externalized’ and accessed through a service boundary boils down to a single
test:

Is it (the considered function or information) sensibly considered a feature
of or property of the Service Domain’s control record instance, and can it
only meaningfully exist as an aspect of that control record and its life
cycle? Or does it refer to some other distinct entity with its own
independent lifecycle, that is governed by its own specialized Service
Domain and handled as a property or feature of its control records?

In the earlier example of a mortgage application one Service Domain: Customer Offer
delegates several actions to other Service Domains. By considering the life cycle of their
respective control records the associated externalization decisions can be readily
understood:

BIAN 81

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Mortgage application captured as a BIAN business scenario

BIAN Business Senario: Customer Mortgage Application

= EED

Party Reference Product
[Ojstomer O‘fer] Datal:\‘rectory] [Directory

Qudeliens
¥ Mongage oner

Retnéve the cu%(assessnient

T TE e

Creale a mmlzngg (includes valuation)

Transfer funds 8

LSgocicR: oo S e o s

Setun the underying tmrsacng

The customer and bank have
agreed to process the mortgage
application. Available customer
reference data is obtained and
the Product Directory
referenced to see what the offer
processing requirements are.

The customer's current bank
credit assessment is dbtained.

Next the details of the property
being mortgaged are captured,
including the current vauation

The gathered details are used
to obtain an underwriting
decision

The offer and all other related
documents are classified and
recorded in the document
archive

Finally the mortgage facility is
initialized

Figure 30 - BIAN Mortgage Application Business Scenario (repeated)

The control record artefact of Customer Offer is a ‘customer offer procedure’. Its life
cycle covers the offer application process from end-to-end and it contains all business
information gathered and created throughout the offer process. Its interactions with the
other Service Domains in the scenario and their respective control records are briefly:

e Customer Offer first accesses Party Reference Data Directory to obtain and
potentially update customer reference information during the offer process. The
control record for Party Reference Data Directory is the party reference data
record. Its life cycle covers the duration of the party/customer relationship and is
clearly maintained independently of the offer procedure. Pertinent customer
information is simply exchanged through a delegated service call

e Customer Offer next references Product Directory to obtain the offer processing
requirements for the selected mortgage product. The control record for Product

BIAN

82

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Directory is the product specification record. Its life cycle covers that of the
product and this is also clearly maintained independently of this single offer
procedure. Information is again exchanged through services.

e This same type of access pattern can be described: for Credit Administration to
review the customer’s credit assessment/report: for Collateral Asset
Administration to establish or reference a record that is maintained for a collateral
item; for Underwriting to obtain an underwriting decision; for document services
to access and or capture documents; and finally, Mortgage Loan to initiate the
set-up of the mortgage product itself as it starts its own life-cycle in this case.

The examples clarify that matching function and information to the Service Domain is
best done by considering the control record and its associated life cycle. Clearly
reconciling business function and information with Service Domains is an easier exercise
when all of the target Service Domains in play have been identified. This is why
developers benefit greatly from having the BIAN business scenarios and wireframes
covering their area of interest to reveal all the involved Service Domains.

Externalization is used to ensure business responsibility can be uniquely assigned
to/associated with a Service Domain. There are some similarities with the concepts of
externalization and the good design of re-usable software utilities. But re-usable
software utilities, that can be implemented as a service enabled functions, should not be
confused with Service Domains. SW utilities will typically also have clearly bounded
functionality and encapsulate their data. A SW utility can also be implemented as a
reusable service based software solution component such as a micro service.

The key difference is that though the SW utility functions as an autonomous capability, it
does not represent a uniquely assignable business responsibility. By definition there can
be many concurrent instances of a SW utility operating completely independently. The
utility implementation ensures that the logic is applied consistently and improves
software integrity and development productivity but it does not specifically address the
operational re-use of a discrete business capability. Not surprisingly a SW Utility will
typically be much finer grained than a Service Domain.

Logical Design Extensions

The logical design extensions that solution architects/designers add to the Service
Domain conceptual requirements and semantic control record attributes can be made in

BIAN 83

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

any suitable form to suit the development environment and techniques being employed
on their project. The general categories of design extension include:

e Variations - adding detail that may be specific to support advanced or
differentiated behaviors, detail to take account of scale requirements (for larger
enterprises), detail to handle geopolitical specific needs

o Design Options — selecting between the possible working approaches available
such as support for interactive versus off-line processing, or the support for
different delivery channels

¢ Organizational Arrangements — handling the particular geographic distribution
and different lines of business that make up an enterprise (see below)

¢ Non-functional Requirements — target goals can be defined for the application
covering properties such as performance and security.

Most of these extensions can simply captured as expanded requirement definitions
associated with the individual Service Domains. In the case of the organizational
arrangements however it can be necessary to deploy different versions of the same
conceptual Service Domain component.

Organizational Configurations of a Service Domain

When the conceptual Service Domain components are related to a complex organization
with different geographic locations of operation and lines of business the functions
supported by some Service Domains become distributed as they are necessarily
repeated across the organization. There are two dominant patterns for dealing with this
distribution:

BIAN 84

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

Organizational distribution of a Service Domain’s business
function is handled in two main ways

Shared/Centralised Services-a Coordinated Services- Consolidated Cross
connecting/proxy Service Domain links the local line Entity views are coordinted through a central
of business to a shared facility ‘reporting’ Service Domain instance

Shared Services & Cross Emity Coordination Sharsd Services & Croes Entity Coordination

)

Figure 31 - Two Distribution Options

The two patterns for distribution are either to connect local needs to a centralized
implementation or to support local capabilities independently and implement some form
of consolidation capability to coordinate between them. The examples in the diagram
show when either approach might better suit a specific business situation.

To support organizational configuration a Service Domain may be deployed in four
different implementation forms:

e As alocal proxy that provides access to a shared centralized service
As the central service supporting multiple proxies

e As the local fulfillment capability but with reporting obligations to a coordinating
‘parent’

e As the central consolidation and coordination ‘parent’ capability

Application Clusters

As already stated, the Service Domain can be considered a major application module
and an application will typically combine several Service Domains. The selection of
Service Domain components for inclusion in an Application design needs to balance a
number of factors such as functional synergies, technical requirements, performance
considerations, legacy application conditions and commercial requirements. The

BIAN 85

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

possible influences are so wide-ranging that it is difficult to be prescriptive as to ‘ideal’
Service Domain combinations for any specific application. By adopting a component
architecture, the ability to assemble any sensible combination is made easier.

When Service Domain components are assembled into a free standing application it is
necessary to define different configuration roles they might play as outlined in the
example:

Example Application Cluster with Service Domain Roles

Application Cluster showing Core/Utility/Proxy Roles
Customer Gontract Product Support Facilities

=

ey:

Core =Service Domain
wholly eontained
within cluster

Proxy = Local instance
synchronised with
masfter

Utility = Local
instance, no need 1o
synchronise

External = First order
service oparation
connections

Peripheral = Second
order -

L

for reference

B 006

may
Product Management pon
Operaticny.

Figure 32 - Application Cluster

From the diagram five distinct roles can be seen for any involved Service Domain:

e Core — the Service Domain instance running in the application is the single,
master version for the enterprise. It is the only physical instance and the sole
source for its services and information

o Proxy —the Service Domain running in the application supports all local
requirements but is connected to an external ‘master’ Service Domain (that will
be running as a ‘Core’ Service Domain in some other application

e Utility —is a local/proxy implementation of a Service Domain where due to its
specific business role, it can operate with no or limited need to connect and
synchronize with a master/core version

BIAN 86

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

o External — records that there is a direct connection from the application cluster to
the Service Domain to either offer and/or subscribe to services. These define the
main external application interfaces

o Peripheral — Sometimes it helps to include additional Service Domains in the
cluster diagram that have some indirect involvement (through an External
Service Domain) simply to clarify limitations in the external application boundary

The logical design for the Service Domain needs to be developed in alignment with its
type of role as outlined in the application cluster. This can involve designing some level
of background service based coordination with external applications to deal with the
different physical configurations.

4.2.3 Physical Specifications

The physical specifications cover the actual code and data specifications used to
implement the Service Domain functionality. The BIAN standard as well as being
implementation agnostic, does not assume or impose any physical properties for the
Service Domains. That said when applied in a component/container type deployment
there are some operational properties that can determine the type of software
architecture and utilities that might be most suitable.

A checklist of some software approaches and utilities to consider include:

e Message queues and events — service exchanges and service triggering,
including sequencing, security and resilience features will apply to all types of
Service Domain

o (Finite) State machines — can be applied to govern the control record lifecycle
and to its sub-partitions as defined by the behavior qualifier type as necessary

e Event driven processing — in partner with state machine designs, there is wide
potential to leverage event driven design. This can apply to specific attributes
and their associated rules/policies or to the states and transition patterns of the
control records (and their behavior qualifier defined sub-partitions)

¢ Workflow management — will have broad application for most types of Service
Domains. In some cases, it will be appropriate to ‘nest’ workflows perhaps
aligned to the control record breakdown by behavior qualifier type

¢ Rules engine — as with workflow management — rules engines are likely to have
wide application

BIAN 87

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

o Data management utilities — particularly as Service Domains govern their own
autonomous data repository, a broad range of data management facilities will be
required. Advanced data management features are likely to have specific
relevance in highly distributed environments (for replication and resilience)

e Analysis and reporting facilities — General analysis and reporting will be widely
applied

e Command & Control — As each Service Domain can act as its own operational
unit there is the possibility to develop Service Domain aligned standard tracking
and reporting facilities to assist with the implementation of command and control
structures between Service Domains

Some utilities may sensibly apply to all Service Domain partitions when implemented as
containers in a SOA. Some utilities may be better suited to Service Domains with
specific functional patterns of behavior. For example, a ‘Process’ Service Domain is
likely to make significant use of workflow management utilities. The table below provides
an indication of how different SW utilities might be particularly well suited to a Service
Domain based on its Functional Pattern:

BIAN 88

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry

Architecture Network

BIAN Semantic API Practitioner Guide V8.1

Mapping Functional Patterns to general SW Utilities (indicative)

ADMINISTER

DESIGN

DEVELOP

PROCESS

OPERATE

MAINTAIN

FULFILL

TRANSACT

ADVISE

MONITOR

TRACK

CATALOG

ENROLL

AGREE
TERMS

ASSESS

ANALYSE

ALLOCATE

Functional Ay

Define the Policies, goals &objectives and
strategies for an organizational entity or unit

Oversee the working of a business unit,
assign work, manage against a plan and
troubleshoot issues.

Handle and assign the day to day activities,
capture time worked, costs and income for
an operational unit.

Create and maintain a design for a
procedure, product/service model or other
such entity.

To build or enhance something, typically an
IT production system. Includes development,
assessment and deployment

Complete work tasks following a procedue in
support of general office activities and
product and service delivery functions.

Operate equipment and/or a largel:
aglomategfa%ility. Y

Provide a maintenance service and repair
devices/equipment as necessary.

Fulfill any scheduled and ad-hoc obligations
under a service arran?emen!.v most typically
for a financial product or facility.

Execute a well bounded financial
transaction/task, typicaly involving largely

Provide specialist advice and/or support as
an ongoln? service or for a specific
task/even

To monitor and define the state/rating of
some entity.

Maintain a log of transactions or activity
typically a financial account/journal or a log of
activity to support behavioral anaysis.

Capture and maintain reference information
about some type of entity.

Maintain a membership for some group or
related collection of parties.

‘Maintain the terms and conditions that apply

0 a commercial relationship.

To test or assess an entity, possibly against
some formal qualification or certification
requirement.

To analyse the performance or behavior of
some on-going activity or entty.

Maintain an inventory o holding of some
resource and make assignments/allocations
as requested.

Message

clcecccceecceelcccccceh
CO000 LS € L L L LOoCLL

State

Machines

Event
Processing

OOOOOO0.0..OOOOOGOOI
SeeeeCCOeeeeee660eS
SeeCCeCCOeeceetod®0O
S0eSCCeCSeeSCeee’t®
omooooomoooooul
.Q“OOQ...“.....“I

Workflow

Man:

g
E

Rules

Engines

Data

Management]

Analysis&
Reporting

Command &|
Control

Figure 33 - Functional Patterns Mapped to SW Techniques & Utilities

In summary, the BIAN standard provides conceptual component designs and provides
some guidance as to how these requirements can be interpreted in development where
more comprehensive logical designs and physical specifications are required. The
underlying assumption is that to remain implementation agnostic and support a
canonical definition, the BIAN definitions must be focused at the conceptual level.

The intended scope of BIAN'’s coverage is indicated:

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

89

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The Scope of the BIAN Standard

BIAN

BIAN Service Landscape

Service Domain Definitions
Business Scenarios & Wireframes
BIAN BOM (mainstrzam coverage)

Logical
Designs

Referenced
Implementatio

Physical
Specifications = Technical Specifications & Configuration | prary

Software Specifications (Code)
Database Schema
Communications Platform

Etc.

(future option)

BIAN

Figure 34 - Scope of BIAN Against the Conceptual/Logical & Physical Layers

4.3 Implementation Approaches

The implementation approaches detailed here outline insights that BIAN members hav
identified for leveraging the Service Domain component partitions in physical
implementation. Some of these techniques have been adapted from techniques used

e

before in related situations such as using BIAN Service Domains and service operations

as a basis for organizing enterprise service bus (ESB) integration.
This is a brief initial list that will hopefully be extended as new techniques and insights
emerge from practical experience. The list is split between approaches suited

specifically to legacy renewal and those that can apply to both legacy and green field
development.

Legacy Wrapping Specific approaches

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

90

BIAN

BIAN Semantic API Practitioner Guide V8.1

Externalization applied to legacy application modules
Reconciling master/slave information governance
Wrapping & service enablement

Migration strategies — the parallel core configuration

General Approaches (suited to both legacy wrapping & greenfield development)

e Shared platform to eliminate service exchanges
e Shared platform to support consolidated cross Service Domain reporting
o BIAN Type 1,2 & 3 external access governance patterns

4.3.1 Legacy Wrapping Approaches

Legacy wrapping is an approach that protects the investment in existing systems by
seeking to enable them to operate in a service based architecture where appropriate.
Wrapping ‘compartmentalizes’ legacy systems aligning to component boundaries with
the wrapping technology providing a mechanism to mitigate shortfalls in the legacy
application. Many legacy systems suffer from fundamental architectural limitations such
as inflexible/monolithic structures and operating in batch mode. But they also often
contain extensive and proven business functionality that would be prohibitively
expensive to re-create.

As already noted, systems that align to a component architecture tend to be more
resilient and flexible as they more readily support different processing flows and are
more adaptive to changes. Once legacy systems have been wrapped and shortfalls
mitigated their shelf-life may be extended considerably. Depending on the extent to
which the wrapping approach masks the architectural limitations of legacy systems it is
possible that key areas of the application portfolio can be repurposed and retained for a
significant time. Particularly for legacy application that already operate in real-time.

The main focus for legacy wrapping is likely to be repurposing high throughput back
office transaction processing systems. The component blueprint is particularly useful for
a broad range of host wrapping and migration techniques. This is because the
component partitions defined in the BIAN standard are highly stable over time.

As described in the BIAN How to Guide — Applying the Standard, an enterprise can
develop an organizational blueprint built using Service Domains as the building blocks.

Once assembled, as long as the business does not change its lines of business or
locations of operation the enterprise blueprint will not change.

BIAN 91

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

An enterprise blueprint is similar to the more narrowly focused wireframe diagram (as
described in Section 3.4) that covers a specific business area. Both provide a stable
framework for migration exercises. Current applications can be mapped to the Service
Domain components based on their functional content. The Service Domain component
service exchanges shown in the wireframe view can also be used to define the major
application interfaces (APIs).

Once a legacy application is mapped to the component blueprint it is possible to
undertake a progressive migration, making incremental changes targeting the more
severe constraints or the greatest opportunities to fund the transition. Clearly planning
an incremental migration of a complex legacy system is a major undertaking. But as
many hosts systems reach obsolescence this migration is no longer optional and an
approach that allows this to be done incrementally against a stable long-term operational
blueprint has obvious significant benefits.

Externalization applied to legacy application modules

Externalization is the BIAN technique used to define the functional scope of a Service
Domain component — determining what it handles directly and what it delegates to other
Service Domains. The approach as applied to define Service Domains has already been
described in Section 4.2.1. of this guide. It is a simple adaptation of this technique that
can be used to apply the same control record based evaluation to the functional scope of
legacy applications in order to map to the corresponding Service Domains.

The control record based mapping used in the externalization technique can be
combined with the Application Cluster perspective described later in the same Section
4.2.1. to develop a target component perspective for the legacy application. The
approach to develop the target state component model for the wrapped legacy
application includes these main steps:

1. Working through the functional scope of the legacy application and referencing
the Service Domains and their associated control record specifications, identify
mapped Service Domains

2. The layout of an Application Cluster diagram is then initiated to represent the
target state/boundary for the wrapped legacy application.

3. The application cluster diagram is populated as key decisions are made as to
whether mapped Service Domain component functionality should remain within
the application cluster or be externalized.

4. For Service Domain mapped functionality that is to remain within the wrapped
application a further decision must be made as to whether it is to represent the
core or a proxy instance of this functionality for the enterprise.

5. For all other mapped functionality, the associated Service Domain capabilities
should eventually be sourced externally from alternate applications.

BIAN 92

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

6. Finally, for key external interfaces to the legacy application, the existing
interfaced system should also be mapped to Service Domains to ensure there is
no redundancy/overlap with the target application Service Domain component
make-up

Reconciling master/slave information governance

The Service Domain component mapping to the legacy application just described
reveals those components that are included within and those that are external and that
need to be interfaced with the wrapped application. The Service Domain control records
can then be used to determine the information governance responsibilities with specific
attention to the included Service Domains.

As described in Section 4.1.2 the design of the Service Domain components results in
the unique mapping of all business information to individual components. The key
information governed by a Service Domain component is catalogued in the semantic
attribute definitions of its control record. At a fairly high level of detail, the control records
for the collection of included Service Domains define the primary governed information
for the application.

Note there may be global referenced data and other Service Domain related data but
these aspects are not considered for simplicity at this stage. See the complete
description of the Service Domain Information profile earlier in this guide.

The governed information inventory can then be related to the current legacy application
database/information and categorized as follows:

e |t represents Master data that is governed by the application — and so must
provide external access as necessary

e |t represents Proxy Master data that is governed in another instance of the
Service Domain in some other application. Reconciliation services need to be
established to synchronize with this external source

e |s alocal copy of externally governed information — i.e. should be retrieved
through an external interface/service call and the values interpreted and applied
to the internal business information model as appropriate

Though high level, the control records provide an inventory of the governed information
matched to the contained Service Domain components of the wrapped legacy
application. This helps define the future state information architecture for the wrapped
application.

BIAN 93

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Wrapping & service enablement

The two prior sub-sections focus on functional and information aspects of component
based legacy repurposing. Wrapping and service enablement augments the component
mapped application with mitigating functionality and if appropriate implements a service
based communications capability to support external interfaces.

The mitigation logic provides interim capabilities that address shortfalls in the legacy
application. These might be resolved as the legacy software is reengineered within
component aligned containers, enhanced in place or replaced completely. The types of
mitigating logic that can be built into the container architecture include:

e Functional extensions — adding ‘front-end’ functionality and supporting
operating requirements that can’t be easily built into the legacy codebase

e Synchronization — capabilities to handle the master/slave data synchronization
requirements between systems

o Proxy capabilities — support temporary functions that will eventually be provided
by alternate/external service providers

e Session optimization and data caching — the wrapper may streamline access
management and can also include logic that performs advanced probabilistic
data look-up and caching to reduce host access costs and latency

In addition to the wrapping logic, service enablement capabilities involve establishing
support for queue and event driven service handling for offered and delegated service
interfaces. These can progressively replace exiting point to point interfaces. The service
management capabilities handle information extraction and import, message assembly
and the protocol/choreography of the service exchanges as appropriate. This may
include tracking and matching responses over time and other scheduling concerns

The service enablement extensions may also provide more general facilities such as
service directory support, service subscription and service level agreements, access
control/security, performance assurance and reporting functions.

Migration strategies — the parallel core configuration

There are numerous established approaches to legacy migration. The key advantage of

a component blueprint in any migration as already noted is that it provides a stable view
of the ‘to be’ state that incremental developments can build towards.

BIAN 94

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

When the component blueprint is combined with a detailed underlying data specification
a powerful migration option can be considered — the ‘parallel core’ configuration. In the
parallel core configuration, a comprehensive data model that is defined to the level of a
physical data specifications is applied to the target component design. The same data
model must then also be mapped to the legacy data structures.

Once this detailed data mapping work is complete the migration involves building out a
parallel component capability in parallel with any componentization/wrapping of the
legacy application. As the data is mapped, the mirrored capabilities in the parallel core
match the legacy application (this may not be in real-time). Initially the parallel core may
simply provide background capabilities such as off-line analysis and reporting. But the
core can be designed to be capable of eventually replacing its matched legacy
component.

In time as critical mass is captured in the parallel core the legacy host components can
be retired from production. When all component capabilities have been migrated the
host application can be decommissioned.

The parallel core migration is critically dependent on the availability of the physical data
specifications. Some examples of an industry standard data specifications are available.

BIAN is currently undertaking feasibility pilot project with such a model as provided by
Ariadne Inc. (their ACTUS open financial instrument cash-flow contract standard).

BIAN 95

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Extending the Information/Data Synchronization to
Support Parallel Core Migration

Service Domain Parallel Replacement

Mapped to Legacy Service Domain

® BIAN Service Landscape . ® BIAN Service Landscape

® Service Domain Semantic Ag reement of core ® Service Domain
Definitions inf . Definitions

® Business Scenarios & Information COHCGptS ® Business Scenarios &
Wireframes Wireframes

" BIAN BOM " BIAN BOM

Logical Designs SYNCHRONIZATION

Logical Designs

Comprehensive Data
Definitions

Physical Specifications

Physical Specifications

Technical Specifications &

Configuration Common Data

Software Specifications Schema. Potentially
(Code)

Database Schema Shared Database
Communications Platform
Etc.

Technical Specifications &
Configuration

Software Specifications
(Code)

Database Schema
Communications Platform
Etc.

Figure 35 - Parallel Core Service Domain Migration

4.3.2 General Approaches (for legacy wrapping & greenfield development)
The current list of general approaches includes:

e Shared platform to eliminate service exchanges
e Shared platform to support consolidated cross Service Domain reporting
e BIAN Type 1,2 & 3 external access governance patterns

In addition to these targeted techniques developers should reference the checklist of
advanced implementation concepts outlined for an event driven component architecture
earlier in this guide (Section 3.6).

Shared Platform to Eliminate Service Exchanges

BIAN 96

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

The component architecture defines discrete and re-usable business functions that can
be shared by means of standard service interfaces. Implicit in this model is that the
connections are typically service enabled in implementation. However, and as noted in
the many earlier discussions of back office process oriented designs, for performance
reasons some exchanges may need to be implemented as dedicated point to point
connections (eliminating the latency and additional layers of processing typically
required in a service exchange).

Another physical configuration can be considered when even higher performance is
required. In this approach as with the parallel core approach already described, the
Service Domains need to be aligned at the physical data specification level. In this
approach the two Service Domain’s maintain their own logical information perspectives,
but the exchanged information attributes are mapped to common physical storage. Data
management and access controls are required to manage concurrent access but
updates made by one Service Domain are instantly visible to the other. The information
is logically exchanged, but no actual physical data transfer takes place.

This configuration is indicated in the diagram:

Eliminating Service Exchanges By
Sharing the Physical Data Platform

Service Exchanges Aligned at the Conceptual Service Exchanges are
Conceptual Level and Interpreted Internally ‘Eliminated’By Physical Data Concurrence

Semantic
Agreement

Logical
Designs

Logical Logical Logical
Designs Designs Designs

Physical
Specifications

—

Physical
Specifications

—

Figure 36 - Eliminating Service Exchanges

Shared Platform to Support Consolidated Cross-Service Domain Reporting

BIAN 97

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

The shared platform approach can be taken further to support high-performance
reporting requirements. In this situation one Service Domain is responsible for the
consolidation, analysis and reporting on information obtained from potentially multiple
source Service Domains.

As with the shared platform between two Service Domains it is hecessary for all involved
Service Domains to agree the physical data specifications for all exchanged data. The
coordinated access to update the shared physical data may require more sophisticated
access management to ensure the integrity of the single physical consolidated ‘position’.
But this physical configuration can support powerful real-time information tracking and
reporting needs for sensitive transactional information.

Consolidated Reporting Sharing the
Physical Data Platform

Consolidating Service Domain
Sits in the center with ashared
physical database

P
@%@
OO

Some portion of thereporting Service Domains’
physical database is shared with the consolidating
Service Domain

Logical Logical Logical

Designs Designs Designs

Physical
Specifications

—

Physical
Specifications

SS= Shared W=
. Data .

Specifications

—

Figure 37 - Shared Platform for Consolidated Reporting

BIAN Type 1,2 & 3 external access governance patterns

Because the Service Domains collectively cover all banking activities and are each
discrete/non-overlapping, their service operations can be used to define a
comprehensive industry standard services directory. Some service exchanges will occur
solely within the bank, between its application mapped Service Domains — these are
referred to as application to application (A2A) APIs. Other service operations may be
provided to parties (customers or third parties) external to the bank — these are referred

BIAN

98

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

to as bank to business and bank to customer (B2B/B2C) APIs. As the distinction
between A2A and B2B/C can vary by enterprise and given that to fully support any
business event it is necessary to address all involved exchanges (both any A2A and
B2B/C interactions) BIAN defines all Service Domain operations to the same level

regardless.

As the BIAN Service Domain service operations are defined at the conceptual level they
may not always map to an individual service exchange with a single request and
response message pair (i.e. an “endpoint”) in physical implementation. The exchange
may need to be further broken down to multiple constituent endpoints fully represent the
choreography and allowed options that make up the interaction. But the BIAN service
operation in this case does at least provide a unique and discrete classification of the
purpose for the exchange.

For service operations that support external access three distinct patterns have emerged
as outlined in the table:

Definition

API Service
Description

Business
Drivers

Pros & Cons

Three Distinct Types of External Access

Type 1. Directto Core Type 2. Wrapped Host Type 3. Component Architecture

The APl routes direct to the
core system providingthe
service. Intermediate channel
based access control and
‘buffering’ is required

Integrating service middleware —a
service bus - ‘wraps’ the host
systems. The service bus can offer
various host access mitigation
capabilities/enhancements

The host services are implemented as
loose coupled micro-services with
complex interactions supported by

sophisticated connectivemiddleware

Read only or simple ‘atomic’
update transactions
supported by asingle host
system. The solutionis likely
to be host application specific

Enhanced ‘simple access’ services
aligned to established standards.
Wrapping may enhance service
capabilities and some hosts may
support more complex exchanges

Support for flexible and complex
interactions involving multiple business
activities and processing/decision
chains

¢ Retrieve abalance/account
statement

¢ Referencea
product/service directory

+ Initiate a payment

Message conforms to industry
standards (e.g.15020022)

¢ Retrieve a balance/account statement
¢ Reference a product/service directory
+ initiate a payment

¢ Customer on-boarding/offers

Prospect on-boarding and origination
Customer dispute/case resolution
Customer relationship development/up-
sell/cross-sell campaigns

Third party service integration

* o0

Provide application based
access to an
established/existing type of
customer exchange

Provide application based access
with a high degree of standards
alignment.Mask/augment
host/legacy system limitations.

Support sophisticated interactions
Support new business models
Support for 3rd party integration
Leverage advanced
technologies/architectures

L 2R 2% 2R 4

Pro - Easy to implement

Pro - Re-uses interfaces
Con - Can’t do multi-phase
Con - Not handle automation

Pro - Reuses legacy capabilities
Pro - Mitigates some shortfalls
Con - Limited for multiphase
Con - Limited foraccess controls

Pro - Supports sophisticated interactions
Pro - Supports flexible models

Con - Complex to implement

Con - Operational overheads

Figure 38 - Three Types of Access

The three types of access are briefly:

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

99

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

1. Direct to Core —the external access is governed by a gateway that implements
basic customer authentication. The gateway then connects directly to the host
system. In many situations re-using an existing external interface that might have
been implemented to support web based or contact center servicing

2. Wrapped Host — in addition to the access gateway, the wrapped host approach
includes a front end capability that can address shortfalls in the host systems.
This can support host migration and repurposing efforts. It includes coordinating
access with multiple systems for more complex transaction, resolving master
slave data conflicts, host access session optimization, information advanced
look-up and caching and supporting functional extensions

3. Component Architecture — involves a comprehensive set of controls to manage
external access to allow direct connection to the internal capabilities of the bank.
A wireframe of the external access platform is shown below

The main elements of the three type of approach are shown in the diagram below. Note
that most banks will probably need to support some combination of all three types of
access approach.

Three Types of External Access

External Ac Framawork APl Gateway

Authentication Resource Access
Service Service

Custarmer & TFF) [Custmmer & TFH

S-nicl"llahpplr

Hieat Host Host Host
Midgatien Mitigaion MiSgaion Mitigation

(=
L}

* -+ - -+ 1l
Aut Servi i p “ iomﬂlse sine
onomous ce Center :
Business Applications M’p[%m '1

(+AZA Services Platform)

Figure 39 - Three Types of Access Schema

BIAN 100

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

The Type 3 access approach is particularly significant as banks consider their approach
to open banking. When the Type 1 & 2 approaches are implemented to support third
party access the connection is typically made directly to the back office transaction
processing systems. This in effect eliminates the bank from participating in any ‘front
office’ dialogue with the customer and third party solution provider.

The Type 3 access approach also supports third party access but links the customer
contact to a front office Service Domain — Session Dialogue. This can then act as a
gateway that structures access to the bank. If appropriate it can access the back office
transaction systems directly (as in Type 1 & 2 approaches). But it can also support a
customer interaction where a wide array of front office capabilities can be worked into
the customer interaction. The Session Dialogue Service Domain can optionally leverage
a second front office Service Domain: Servicing Order that implements more complex
structured workflows to orchestrate different customer interactions.

The distinction between Type 1 and Type 2 & 3 access patterns is summarized in the
following diagram:

Contrasting BIAN Type 1 Vs Type 3 access for open banking interactions

Note: BIAN Type 2 access covers
legacy wrapping and migration options
= this access pattern is of imited
interast in the context of this paper

r
BANK I%%umnr %%“JMHIP :
ampaigns| Management -0
[y CoEn =
=

Werchant o = % H . I
1 a8

Authantication
Front Campaigns _ = | crearen [Cusinmer & TRR)
Office 7 f ¢ Authentication & |

: Consent Authorization - |

Servicing Session e
Order g Dialogue

-] ey e -y TRANSACTION SYSTEMS

el g T R TP g OO @ S i o
[wii] OETE [[[m: i [

Session Dialogue supports menu driven “canned” transactional access; optionally
Servicing Order can be called to support more complex structured workflows

Figure 40 - Contrasting Type 3 and Type 1 & 2 Access

Finally, the main elements of the Type 3 External Access Framework can be seen in the
following wireframe. The wireframe reveals the range of capabilities needed to properly
control the access of customers and external third parties to the internal workings of the

BIAN 101

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network

BIAN Semantic API Practitioner Guide V8.1

bank. As bank’s explore new business models, including collaboration with FinTechs
and the adoption of open banking approaches, support for this kind of external

coordination will be crucial.

The BIAN External Access Framework is a draft specific application of the BIAN
standard that is being applied to a proof of concept initiative at the time of publication.
The results of this exercise and a more complete specification of the framework is
documented elsewhere.

The Service Domains Handling External Access (Type 3 Wireframe)

Competent Authority (TA)|

Competent Authority (OP)|

ervice Provider

| Customer |

Q s
a wm

Competent Authority (CA)

scopes

sues SW SSA
lanages service membership &

Access Controls
Issued

Rdministratio

Issued
Device Device
Tracking

Customer
Workbench

Authentication

Party
Lifecycle
Management]

Party
Access
Profile

e \
henticatior

EBranch
Operations

External
Directories
& Agencies Contact Center
Legal Enti
External Access RelSience e Contact
Framework Dietor e
Authorization - Contact
Handler
[Brokered jihy
Agreement Product Entitlement Contact
Jransaction | ¢ Routing
muri[nuiuﬂ —
- e, I/ Customer Servicing
Agrzgrtr\e‘?lrn EIiJibiIity Servicing | gs] Foint of
£} / Order ¥ Diajglg;)une Service

r

Relationship Development

Customer Consumer

i Product 2
Campaign : Advison
[Exec?nign] [Dlrectory] [Sorvice

)

Customer

'y

Product
Matching

Customer
Position

Customer
Credit

Account N

! Savings ! | ! !Investment! | Current !]4
Account Mortgage Account

Fraud Manadgement

Fraud
Decisioning

Fraud
Resolution

Back & Front Office

Servicing

Fraud
Insights

Access Histgry & Analygis
Servicing
nt

Channel
Activity
History

Eve
History History

Customer
Behavior
Models

Servicing Channel
Behavioral Activity Activity
Insights Analysis Analysis

Figure 41 - External Access Framework Wireframe

BIAN

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

-BIAN 103

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

[

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

Attachments

A - Action Terms as they Relate to Functional Patterns & Control Records
B - Right-sizing a Service Domain

BIAN 104

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

ATTACHMENT — A — Action Terms Related to Functional Patterns

Action Terms as they Relate to Functional Patterns & Control Records

In some cases, it can appear that the same action term results in different behaviors
when applied to different Service Domains. This is because the Service Domains’ can
have very different underlying operational characteristics. To fully understand how the
action term is actually being consistently applied it is sometimes necessary to consider
the Service Domain’s functional pattern/control record explicitly.

The is the case with the response to the action terms initiate and execute when applied
to Service Domains with a fulfillment functional pattern compared to Service Domains
with a process functional pattern. To clarify we will review these actions terms applied to
two different Service Domains: Current Account with its fulfillment functional pattern and
Customer Billing with its process functional pattern. In each case we also consider how a
sample of their underlying behavior qualifiers are accessed.

The Current Account Service Domain with the ‘fulfilment’ functional pattern has control
record instances: current account fulfilment arrangements. The behavior qualifier type
for a fulfilment arrangement (i.e, how the current account fulfilment arrangement record
is broken into parts) is features, in this case representing the different product features
that make up the current account facility. For this explanation we will refer to two
behavior qualifiers/product features — interest (handles the array of interest rates
applicable to the current account facility) and payments (handles the set-up and
execution of different types of payment made from the account, including regular
payments, standing orders, direct debits and bill pay).

The Customer Billing Service Domain with the ‘process’ functional pattern has control
record instances: customer billing procedures. The behavior qualifier type for a process
(i.e. how the customer billing procedure record is broken into parts) is work steps, in this
case the series of steps in handling a customer billing cycle. For this explanation we will
refer to two behavior qualifiers/procedure work steps — invoicing (handling the
generation of the customer invoice) and tracking and reminders (handling the tracking
and issuance of reminders).

The action terms initiate and execute have very different general purposes as already
described. Below we describe how they both act on the two different Service Domain
types to clarify how they do in actuality act consistently on their control records (or their
constituent behavior qualifiers). But as can be seen the requests result in rather different
operational behaviors due to the differing functional patterns:

Initiate — results in the creation and initialization of a new control record instance
or a contained behavior qualifier instance for an existing control record. This

BIAN 105

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

action term is used for both the Current Account and the Customer Billing
Service Domain.

For Current Account the initiate action term results in the following response at
the control record and behavior qualifier levels:

“initiate current account fulfillment arrangement” will result in a new
current account facility being established and initialized as appropriate

“initiate current account fulfillment arrangement | interest” will result in
specific interest handling features being established for the account. This
would normally be done as an internally orchestrated product fulfillment
set-up function so an external service call might not always be
required/supported

“initiate current account fulfillment arrangement | payments” will result in
the set-up of a payments capability associated with the account. This
includes regular scheduled payments such as a standing order. In the
case of one-off/fad-hoc payments this call only establishes/configures the
capability to handle payments — importantly it does not handle the
transaction itself (see ‘execute’ later)

For Customer Billing the initiate action term results in the following response at
the control record and behavior qualifier levels:

“initiate customer billing procedure” will trigger the customer billing
process, in this case the end to end processing of a customer bill. As the
Service Domain’s process logic may orchestrate all end to end actions,
this might be the only required external service call

“initiate customer billing procedure | invoicing” would trigger the
generation of the invoice that is then sent to the customer. As this work
step follows on automatically from the initiation of the overall process, this
more specific service is unlikely to be required/supported as just noted

“initiate customer billing procedure | tracking and reminders” would trigger
the generation of a reminder missive if the payment is overdue. This
action could also be internally generated to a schedule or it is possible
that an external service would be provided to allow other parties to trigger
billing reminders

BIAN 106

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

Execute — is an action that acts on an active control record instance or one of its
subordinate behavior qualifier instances as necessary. The execute action will
invoke some automated task that is then applied to the instance.

For Current Account the execute action can result in the following responses:

“execute current account fulfillment arrangement” will trigger an
automated action that applies to the overall account such as perhaps
purging old account records (it is hard to define a particularly good
example as most interesting product functions are covered by the
underlying behavior qualifier product features)

“execute current account fulfillment arrangement | interest” will trigger an
automated task associated with the application of interest to the account
— such as applying an amended rate to some specific aspect of the
account

“‘execute current account fulfillment arrangement | payment” will trigger a
payment transaction against some pre-configured payment feature. This
could be making an ad-hoc payment from the account, or an instruction to
override a scheduled standing order payment for example.

For Customer Billing the execute action can result in the following responses:

“execute customer billing procedure” will trigger an automated action
against an active billing procedure, for example an instruction to reset the
billing process

“execute customer billing procedure | invoicing” will trigger an automated
action specific to an already active invoicing work step of the billing
process such as generating a duplicate/repeat invoice

“execute customer billing procedure | tracking and reminders” will trigger
an automated action against an already active reminder work step such
as redirecting the scheduled reminder missives

From the example it can be seen that for Service Domains that handle an on-going
fulfillment facility such as Current Account the initiate action is needed to set-up some
feature and then the execute action is used to trigger related transactional events. For
Service Domains that are more process oriented such as Customer Billing the initiate
action typically triggers a chain of processing activities and the execute action is only
used (comparatively rarely) to intervene in these active processing activities when
necessary. The response to the initiate and execute action terms is consistent in each

BIAN 107

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

i

BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

case, but due to the different operating profiles, the resulting Service Domain responses
are quite different.

It is worth noting that the BIAN control records and behavior qualifier types have been
specifically designed to ensure the meaning of an action term is consistent whether it is
applied to the overall control record instance or any of its constituent parts as defined by
the behavior qualifiers (or sub-qualifiers). As described earlier this is because the
behavior qualifier continues to apply the functional pattern behavior but to some sub-set
aspect of the Service Domain’s function.

BIAN 108

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

BIAN

BIAN Semantic API Practitioner Guide V8.1

ATTACHMENT - B — Right-sizing a Service Domain

Right-sizing a Service Domain

The technique used to define the correct scope for a Service Domain is quite complex,
iterative and involves several overlapping considerations. As implementers use
established Service Domains and should not have to define new Service Domains it is
fortunately not necessary to learn this particular technique. It is explained in the BIAN
architectural guides but is briefly outlined here for general information only.

As every Service Domain applies a single functional pattern of behavior for the complete
life cycle the one variable that determines how a Service Domain is ‘right-sized’ is the
selection of the asset type that it acts upon. In this context an asset refers to anything
that the bank owns or has some control over. An asset can be something tangible such
as buildings or technology or something less tangible such as a customer relationship or
market knowledge. The capacity to perform some kind of function is also considered as
an asset such as a call center that provides the capacity to service customers and the
production facilities that provide the capacity to deliver current account services.

In order to isolate banking asset types BIAN has defined a mutually exclusive,
collectively exhaustive (MECE) asset type classification hierarchy. Asset types are
progressively broken down into sub-types up to the precise point where they retain
unique business meaning/context. Below this level the finer grained asset types become
more utility in nature.

For example, consider the asset representing the overall capacity a bank has to handle
interactions with different parties. This asset/capability can be broken down to sub-types
that might address interactions with different types of party (e.g. interactions with
employees, business partners and customers). At some point, say when we attempt to
break down the capacity to handle the interactions with customers further we define finer
grained activities such as the capacity to hold meetings, develop performance plans,
troubleshoot issues, etc. These actions are no longer uniquely assignable to a specific
organizational role (in this case customer relationship management) but are more utility
in nature as they can be performed in many different parts of the organization.

Asset types defined at the level just above the point where they are commaodity in nature,
when acted upon by a single functional pattern define an elemental business function
partition. So in this example, applying the ‘management’ functional pattern, we could
define a Customer Relationship Management Service Domain as it has unique business
context that can be clearly assigned within the organization. But a lower level “Party
Meeting Management” Service Domain could be assigned to many different responsible
organizational areas as a utility function/activity and so fails the design requirements for
a Service Domain.

BIAN 109

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

~=BIAN

Banking Industry
Architecture Network BIAN Semantic API Practitioner Guide V8.1

-BIAN 110

© 2020 BIAN e.V. | Frankfurt, Westend Fair | Friedrich-Ebert-Anlage 36 | 60065 Frankfurt am Main | Germany

